spark GBTRegressor 源码
spark GBTRegressor 代码
文件路径:/mllib/src/main/scala/org/apache/spark/ml/regression/GBTRegressor.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.regression
import org.json4s.{DefaultFormats, JObject}
import org.json4s.JsonDSL._
import org.apache.spark.annotation.Since
import org.apache.spark.internal.Logging
import org.apache.spark.ml.linalg.{BLAS, Vector}
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.tree._
import org.apache.spark.ml.tree.impl.GradientBoostedTrees
import org.apache.spark.ml.util._
import org.apache.spark.ml.util.DatasetUtils.extractInstances
import org.apache.spark.ml.util.DefaultParamsReader.Metadata
import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.mllib.tree.configuration.{Algo => OldAlgo}
import org.apache.spark.mllib.tree.model.{GradientBoostedTreesModel => OldGBTModel}
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StructType
/**
* <a href="http://en.wikipedia.org/wiki/Gradient_boosting">Gradient-Boosted Trees (GBTs)</a>
* learning algorithm for regression.
* It supports both continuous and categorical features.
*
* The implementation is based upon: J.H. Friedman. "Stochastic Gradient Boosting." 1999.
*
* Notes on Gradient Boosting vs. TreeBoost:
* - This implementation is for Stochastic Gradient Boosting, not for TreeBoost.
* - Both algorithms learn tree ensembles by minimizing loss functions.
* - TreeBoost (Friedman, 1999) additionally modifies the outputs at tree leaf nodes
* based on the loss function, whereas the original gradient boosting method does not.
* - When the loss is SquaredError, these methods give the same result, but they could differ
* for other loss functions.
* - We expect to implement TreeBoost in the future:
* [https://issues.apache.org/jira/browse/SPARK-4240]
*/
@Since("1.4.0")
class GBTRegressor @Since("1.4.0") (@Since("1.4.0") override val uid: String)
extends Regressor[Vector, GBTRegressor, GBTRegressionModel]
with GBTRegressorParams with DefaultParamsWritable with Logging {
@Since("1.4.0")
def this() = this(Identifiable.randomUID("gbtr"))
// Override parameter setters from parent trait for Java API compatibility.
// Parameters from TreeRegressorParams:
/** @group setParam */
@Since("1.4.0")
def setMaxDepth(value: Int): this.type = set(maxDepth, value)
/** @group setParam */
@Since("1.4.0")
def setMaxBins(value: Int): this.type = set(maxBins, value)
/** @group setParam */
@Since("1.4.0")
def setMinInstancesPerNode(value: Int): this.type = set(minInstancesPerNode, value)
/** @group setParam */
@Since("3.0.0")
def setMinWeightFractionPerNode(value: Double): this.type = set(minWeightFractionPerNode, value)
/** @group setParam */
@Since("1.4.0")
def setMinInfoGain(value: Double): this.type = set(minInfoGain, value)
/** @group expertSetParam */
@Since("1.4.0")
def setMaxMemoryInMB(value: Int): this.type = set(maxMemoryInMB, value)
/** @group expertSetParam */
@Since("1.4.0")
def setCacheNodeIds(value: Boolean): this.type = set(cacheNodeIds, value)
/**
* Specifies how often to checkpoint the cached node IDs.
* E.g. 10 means that the cache will get checkpointed every 10 iterations.
* This is only used if cacheNodeIds is true and if the checkpoint directory is set in
* [[org.apache.spark.SparkContext]].
* Must be at least 1.
* (default = 10)
* @group setParam
*/
@Since("1.4.0")
def setCheckpointInterval(value: Int): this.type = set(checkpointInterval, value)
/**
* The impurity setting is ignored for GBT models.
* Individual trees are built using impurity "Variance."
*
* @group setParam
*/
@Since("1.4.0")
def setImpurity(value: String): this.type = {
logWarning("GBTRegressor.setImpurity should NOT be used")
this
}
// Parameters from TreeEnsembleParams:
/** @group setParam */
@Since("1.4.0")
def setSubsamplingRate(value: Double): this.type = set(subsamplingRate, value)
/** @group setParam */
@Since("1.4.0")
def setSeed(value: Long): this.type = set(seed, value)
// Parameters from GBTParams:
/** @group setParam */
@Since("1.4.0")
def setMaxIter(value: Int): this.type = set(maxIter, value)
/** @group setParam */
@Since("1.4.0")
def setStepSize(value: Double): this.type = set(stepSize, value)
// Parameters from GBTRegressorParams:
/** @group setParam */
@Since("1.4.0")
def setLossType(value: String): this.type = set(lossType, value)
/** @group setParam */
@Since("2.3.0")
def setFeatureSubsetStrategy(value: String): this.type =
set(featureSubsetStrategy, value)
/** @group setParam */
@Since("2.4.0")
def setValidationIndicatorCol(value: String): this.type = {
set(validationIndicatorCol, value)
}
/**
* Sets the value of param [[weightCol]].
* If this is not set or empty, we treat all instance weights as 1.0.
* By default the weightCol is not set, so all instances have weight 1.0.
*
* @group setParam
*/
@Since("3.0.0")
def setWeightCol(value: String): this.type = set(weightCol, value)
override protected def train(dataset: Dataset[_]): GBTRegressionModel = instrumented { instr =>
val withValidation = isDefined(validationIndicatorCol) && $(validationIndicatorCol).nonEmpty
val (trainDataset, validationDataset) = if (withValidation) {
(extractInstances(this, dataset.filter(not(col($(validationIndicatorCol))))),
extractInstances(this, dataset.filter(col($(validationIndicatorCol)))))
} else {
(extractInstances(this, dataset), null)
}
instr.logPipelineStage(this)
instr.logDataset(dataset)
instr.logParams(this, labelCol, featuresCol, predictionCol, leafCol, weightCol, impurity,
lossType, maxDepth, maxBins, maxIter, maxMemoryInMB, minInfoGain, minInstancesPerNode,
minWeightFractionPerNode, seed, stepSize, subsamplingRate, cacheNodeIds, checkpointInterval,
featureSubsetStrategy, validationIndicatorCol, validationTol)
val categoricalFeatures = MetadataUtils.getCategoricalFeatures(dataset.schema($(featuresCol)))
val boostingStrategy = super.getOldBoostingStrategy(categoricalFeatures, OldAlgo.Regression)
val (baseLearners, learnerWeights) = if (withValidation) {
GradientBoostedTrees.runWithValidation(trainDataset, validationDataset, boostingStrategy,
$(seed), $(featureSubsetStrategy), Some(instr))
} else {
GradientBoostedTrees.run(trainDataset, boostingStrategy,
$(seed), $(featureSubsetStrategy), Some(instr))
}
baseLearners.foreach(copyValues(_))
val numFeatures = baseLearners.head.numFeatures
instr.logNumFeatures(numFeatures)
new GBTRegressionModel(uid, baseLearners, learnerWeights, numFeatures)
}
@Since("1.4.0")
override def copy(extra: ParamMap): GBTRegressor = defaultCopy(extra)
}
@Since("1.4.0")
object GBTRegressor extends DefaultParamsReadable[GBTRegressor] {
/** Accessor for supported loss settings: squared (L2), absolute (L1) */
@Since("1.4.0")
final val supportedLossTypes: Array[String] = GBTRegressorParams.supportedLossTypes
@Since("2.0.0")
override def load(path: String): GBTRegressor = super.load(path)
}
/**
* <a href="http://en.wikipedia.org/wiki/Gradient_boosting">Gradient-Boosted Trees (GBTs)</a>
* model for regression.
* It supports both continuous and categorical features.
* @param _trees Decision trees in the ensemble.
* @param _treeWeights Weights for the decision trees in the ensemble.
*/
@Since("1.4.0")
class GBTRegressionModel private[ml](
override val uid: String,
private val _trees: Array[DecisionTreeRegressionModel],
private val _treeWeights: Array[Double],
override val numFeatures: Int)
extends RegressionModel[Vector, GBTRegressionModel]
with GBTRegressorParams with TreeEnsembleModel[DecisionTreeRegressionModel]
with MLWritable with Serializable {
require(_trees.nonEmpty, "GBTRegressionModel requires at least 1 tree.")
require(_trees.length == _treeWeights.length, "GBTRegressionModel given trees, treeWeights of" +
s" non-matching lengths (${_trees.length}, ${_treeWeights.length}, respectively).")
/**
* Construct a GBTRegressionModel
* @param _trees Decision trees in the ensemble.
* @param _treeWeights Weights for the decision trees in the ensemble.
*/
@Since("1.4.0")
def this(uid: String, _trees: Array[DecisionTreeRegressionModel], _treeWeights: Array[Double]) =
this(uid, _trees, _treeWeights, -1)
@Since("1.4.0")
override def trees: Array[DecisionTreeRegressionModel] = _trees
/**
* Number of trees in ensemble
*/
@Since("2.0.0")
val getNumTrees: Int = trees.length
@Since("1.4.0")
override def treeWeights: Array[Double] = _treeWeights
@Since("1.4.0")
override def transformSchema(schema: StructType): StructType = {
var outputSchema = super.transformSchema(schema)
if ($(leafCol).nonEmpty) {
outputSchema = SchemaUtils.updateField(outputSchema, getLeafField($(leafCol)))
}
outputSchema
}
override def transform(dataset: Dataset[_]): DataFrame = {
val outputSchema = transformSchema(dataset.schema, logging = true)
var predictionColNames = Seq.empty[String]
var predictionColumns = Seq.empty[Column]
val bcastModel = dataset.sparkSession.sparkContext.broadcast(this)
if ($(predictionCol).nonEmpty) {
val predictUDF = udf { features: Vector => bcastModel.value.predict(features) }
predictionColNames :+= $(predictionCol)
predictionColumns :+= predictUDF(col($(featuresCol)))
.as($(featuresCol), outputSchema($(featuresCol)).metadata)
}
if ($(leafCol).nonEmpty) {
val leafUDF = udf { features: Vector => bcastModel.value.predictLeaf(features) }
predictionColNames :+= $(leafCol)
predictionColumns :+= leafUDF(col($(featuresCol)))
.as($(leafCol), outputSchema($(leafCol)).metadata)
}
if (predictionColNames.nonEmpty) {
dataset.withColumns(predictionColNames, predictionColumns)
} else {
this.logWarning(s"$uid: GBTRegressionModel.transform() does nothing" +
" because no output columns were set.")
dataset.toDF()
}
}
override def predict(features: Vector): Double = {
// TODO: When we add a generic Boosting class, handle transform there? SPARK-7129
// Classifies by thresholding sum of weighted tree predictions
val treePredictions = _trees.map(_.rootNode.predictImpl(features).prediction)
BLAS.nativeBLAS.ddot(getNumTrees, treePredictions, 1, _treeWeights, 1)
}
@Since("1.4.0")
override def copy(extra: ParamMap): GBTRegressionModel = {
copyValues(new GBTRegressionModel(uid, _trees, _treeWeights, numFeatures),
extra).setParent(parent)
}
@Since("1.4.0")
override def toString: String = {
s"GBTRegressionModel: uid=$uid, numTrees=$getNumTrees, numFeatures=$numFeatures"
}
/**
* Estimate of the importance of each feature.
*
* Each feature's importance is the average of its importance across all trees in the ensemble
* The importance vector is normalized to sum to 1. This method is suggested by Hastie et al.
* (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.)
* and follows the implementation from scikit-learn.
*
* @see `DecisionTreeRegressionModel.featureImportances`
*/
@Since("2.0.0")
lazy val featureImportances: Vector =
TreeEnsembleModel.featureImportances(trees, numFeatures, perTreeNormalization = false)
/** (private[ml]) Convert to a model in the old API */
private[ml] def toOld: OldGBTModel = {
new OldGBTModel(OldAlgo.Regression, _trees.map(_.toOld), _treeWeights)
}
/**
* Method to compute error or loss for every iteration of gradient boosting.
*
* @param dataset Dataset for validation.
* @param loss The loss function used to compute error. Supported options: squared, absolute
*/
@Since("2.4.0")
def evaluateEachIteration(dataset: Dataset[_], loss: String): Array[Double] = {
val data = extractInstances(this, dataset)
GradientBoostedTrees.evaluateEachIteration(data, trees, treeWeights,
convertToOldLossType(loss), OldAlgo.Regression)
}
@Since("2.0.0")
override def write: MLWriter = new GBTRegressionModel.GBTRegressionModelWriter(this)
}
@Since("2.0.0")
object GBTRegressionModel extends MLReadable[GBTRegressionModel] {
@Since("2.0.0")
override def read: MLReader[GBTRegressionModel] = new GBTRegressionModelReader
@Since("2.0.0")
override def load(path: String): GBTRegressionModel = super.load(path)
private[GBTRegressionModel]
class GBTRegressionModelWriter(instance: GBTRegressionModel) extends MLWriter {
override protected def saveImpl(path: String): Unit = {
val extraMetadata: JObject = Map(
"numFeatures" -> instance.numFeatures,
"numTrees" -> instance.getNumTrees)
EnsembleModelReadWrite.saveImpl(instance, path, sparkSession, extraMetadata)
}
}
private class GBTRegressionModelReader extends MLReader[GBTRegressionModel] {
/** Checked against metadata when loading model */
private val className = classOf[GBTRegressionModel].getName
private val treeClassName = classOf[DecisionTreeRegressionModel].getName
override def load(path: String): GBTRegressionModel = {
implicit val format = DefaultFormats
val (metadata: Metadata, treesData: Array[(Metadata, Node)], treeWeights: Array[Double]) =
EnsembleModelReadWrite.loadImpl(path, sparkSession, className, treeClassName)
val numFeatures = (metadata.metadata \ "numFeatures").extract[Int]
val numTrees = (metadata.metadata \ "numTrees").extract[Int]
val trees = treesData.map {
case (treeMetadata, root) =>
val tree = new DecisionTreeRegressionModel(treeMetadata.uid, root, numFeatures)
treeMetadata.getAndSetParams(tree)
tree
}
require(numTrees == trees.length, s"GBTRegressionModel.load expected $numTrees" +
s" trees based on metadata but found ${trees.length} trees.")
val model = new GBTRegressionModel(metadata.uid, trees, treeWeights, numFeatures)
metadata.getAndSetParams(model)
model
}
}
/** Convert a model from the old API */
private[ml] def fromOld(
oldModel: OldGBTModel,
parent: GBTRegressor,
categoricalFeatures: Map[Int, Int],
numFeatures: Int = -1): GBTRegressionModel = {
require(oldModel.algo == OldAlgo.Regression, "Cannot convert GradientBoostedTreesModel" +
s" with algo=${oldModel.algo} (old API) to GBTRegressionModel (new API).")
val newTrees = oldModel.trees.map { tree =>
// parent for each tree is null since there is no good way to set this.
DecisionTreeRegressionModel.fromOld(tree, null, categoricalFeatures)
}
val uid = if (parent != null) parent.uid else Identifiable.randomUID("gbtr")
new GBTRegressionModel(uid, newTrees, oldModel.treeWeights, numFeatures)
}
}
相关信息
相关文章
spark AFTSurvivalRegression 源码
spark DecisionTreeRegressor 源码
spark GeneralizedLinearRegression 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦