spark SQLAppStatusStore 源码
spark SQLAppStatusStore 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/ui/SQLAppStatusStore.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.ui
import java.lang.{Long => JLong}
import java.util.Date
import scala.collection.mutable.ArrayBuffer
import com.fasterxml.jackson.annotation.JsonIgnore
import com.fasterxml.jackson.databind.annotation.JsonDeserialize
import org.apache.spark.JobExecutionStatus
import org.apache.spark.status.KVUtils
import org.apache.spark.status.KVUtils.KVIndexParam
import org.apache.spark.util.kvstore.{KVIndex, KVStore}
/**
* Provides a view of a KVStore with methods that make it easy to query SQL-specific state. There's
* no state kept in this class, so it's ok to have multiple instances of it in an application.
*/
class SQLAppStatusStore(
store: KVStore,
val listener: Option[SQLAppStatusListener] = None) {
def executionsList(): Seq[SQLExecutionUIData] = {
KVUtils.viewToSeq(store.view(classOf[SQLExecutionUIData]))
}
def executionsList(offset: Int, length: Int): Seq[SQLExecutionUIData] = {
KVUtils.viewToSeq(store.view(classOf[SQLExecutionUIData]).skip(offset).max(length))
}
def execution(executionId: Long): Option[SQLExecutionUIData] = {
try {
Some(store.read(classOf[SQLExecutionUIData], executionId))
} catch {
case _: NoSuchElementException => None
}
}
def executionsCount(): Long = {
store.count(classOf[SQLExecutionUIData])
}
def planGraphCount(): Long = {
store.count(classOf[SparkPlanGraphWrapper])
}
def executionMetrics(executionId: Long): Map[Long, String] = {
def metricsFromStore(): Option[Map[Long, String]] = {
val exec = store.read(classOf[SQLExecutionUIData], executionId)
Option(exec.metricValues)
}
metricsFromStore()
.orElse(listener.flatMap(_.liveExecutionMetrics(executionId)))
// Try a second time in case the execution finished while this method is trying to
// get the metrics.
.orElse(metricsFromStore())
.getOrElse(Map())
}
def planGraph(executionId: Long): SparkPlanGraph = {
store.read(classOf[SparkPlanGraphWrapper], executionId).toSparkPlanGraph()
}
}
class SQLExecutionUIData(
@KVIndexParam val executionId: Long,
val description: String,
val details: String,
val physicalPlanDescription: String,
val modifiedConfigs: Map[String, String],
val metrics: Seq[SQLPlanMetric],
val submissionTime: Long,
val completionTime: Option[Date],
@JsonDeserialize(keyAs = classOf[Integer])
val jobs: Map[Int, JobExecutionStatus],
@JsonDeserialize(contentAs = classOf[Integer])
val stages: Set[Int],
/**
* This field is only populated after the execution is finished; it will be null while the
* execution is still running. During execution, aggregate metrics need to be retrieved
* from the SQL listener instance.
*/
@JsonDeserialize(keyAs = classOf[JLong])
val metricValues: Map[Long, String]) {
@JsonIgnore @KVIndex("completionTime")
private def completionTimeIndex: Long = completionTime.map(_.getTime).getOrElse(-1L)
}
class SparkPlanGraphWrapper(
@KVIndexParam val executionId: Long,
val nodes: Seq[SparkPlanGraphNodeWrapper],
val edges: Seq[SparkPlanGraphEdge]) {
def toSparkPlanGraph(): SparkPlanGraph = {
SparkPlanGraph(nodes.map(_.toSparkPlanGraphNode()), edges)
}
}
class SparkPlanGraphClusterWrapper(
val id: Long,
val name: String,
val desc: String,
val nodes: Seq[SparkPlanGraphNodeWrapper],
val metrics: Seq[SQLPlanMetric]) {
def toSparkPlanGraphCluster(): SparkPlanGraphCluster = {
new SparkPlanGraphCluster(id, name, desc,
new ArrayBuffer() ++ nodes.map(_.toSparkPlanGraphNode()),
metrics)
}
}
/** Only one of the values should be set. */
class SparkPlanGraphNodeWrapper(
val node: SparkPlanGraphNode,
val cluster: SparkPlanGraphClusterWrapper) {
def toSparkPlanGraphNode(): SparkPlanGraphNode = {
assert(node == null ^ cluster == null, "Exactly one of node, cluster values to be set.")
if (node != null) node else cluster.toSparkPlanGraphCluster()
}
}
case class SQLPlanMetric(
name: String,
accumulatorId: Long,
metricType: String)
相关信息
相关文章
spark SQLHistoryServerPlugin 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦