spark StreamMetadata 源码
spark StreamMetadata 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/StreamMetadata.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.streaming
import java.io.{InputStreamReader, OutputStreamWriter}
import java.nio.charset.StandardCharsets
import scala.util.control.NonFatal
import org.apache.commons.io.IOUtils
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileAlreadyExistsException, FSDataInputStream, Path}
import org.json4s.NoTypeHints
import org.json4s.jackson.Serialization
import org.apache.spark.internal.Logging
import org.apache.spark.sql.errors.QueryExecutionErrors
import org.apache.spark.sql.execution.streaming.CheckpointFileManager.CancellableFSDataOutputStream
/**
* Contains metadata associated with a [[org.apache.spark.sql.streaming.StreamingQuery]].
* This information is written in the checkpoint location the first time a query is started
* and recovered every time the query is restarted.
*
* @param id unique id of the [[org.apache.spark.sql.streaming.StreamingQuery]]
* that needs to be persisted across restarts
*/
case class StreamMetadata(id: String) {
def json: String = Serialization.write(this)(StreamMetadata.format)
}
object StreamMetadata extends Logging {
implicit val format = Serialization.formats(NoTypeHints)
/** Read the metadata from file if it exists */
def read(metadataFile: Path, hadoopConf: Configuration): Option[StreamMetadata] = {
val fileManager = CheckpointFileManager.create(metadataFile.getParent, hadoopConf)
if (fileManager.exists(metadataFile)) {
var input: FSDataInputStream = null
try {
input = fileManager.open(metadataFile)
val reader = new InputStreamReader(input, StandardCharsets.UTF_8)
val metadata = Serialization.read[StreamMetadata](reader)
Some(metadata)
} catch {
case NonFatal(e) =>
logError(s"Error reading stream metadata from $metadataFile", e)
throw e
} finally {
IOUtils.closeQuietly(input)
}
} else None
}
/** Write metadata to file */
def write(
metadata: StreamMetadata,
metadataFile: Path,
hadoopConf: Configuration): Unit = {
var output: CancellableFSDataOutputStream = null
try {
val fileManager = CheckpointFileManager.create(metadataFile.getParent, hadoopConf)
output = fileManager.createAtomic(metadataFile, overwriteIfPossible = false)
val writer = new OutputStreamWriter(output)
Serialization.write(metadata, writer)
writer.close()
} catch {
case e: FileAlreadyExistsException =>
if (output != null) {
output.cancel()
}
throw QueryExecutionErrors.multiStreamingQueriesUsingPathConcurrentlyError(
metadataFile.getName, e)
case e: Throwable =>
if (output != null) {
output.cancel()
}
logError(s"Error writing stream metadata $metadata to $metadataFile", e)
throw e
}
}
}
相关信息
相关文章
spark AvailableNowDataStreamWrapper 源码
spark AvailableNowMicroBatchStreamWrapper 源码
spark AvailableNowSourceWrapper 源码
spark CheckpointFileManager 源码
spark CompactibleFileStreamLog 源码
spark ContinuousRecordEndpoint 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦