spark GLMRegressionModel 源码

  • 2022-10-20
  • 浏览 (211)

spark GLMRegressionModel 代码

文件路径:/mllib/src/main/scala/org/apache/spark/mllib/regression/impl/GLMRegressionModel.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.mllib.regression.impl

import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.util.Loader
import org.apache.spark.sql.{Row, SparkSession}

/**
 * Helper methods for import/export of GLM regression models.
 */
private[regression] object GLMRegressionModel {

  object SaveLoadV1_0 {

    def thisFormatVersion: String = "1.0"

    /** Model data for model import/export */
    case class Data(weights: Vector, intercept: Double)

    /**
     * Helper method for saving GLM regression model metadata and data.
     * @param modelClass  String name for model class, to be saved with metadata
     */
    def save(
        sc: SparkContext,
        path: String,
        modelClass: String,
        weights: Vector,
        intercept: Double): Unit = {
      val spark = SparkSession.builder().sparkContext(sc).getOrCreate()

      // Create JSON metadata.
      val metadata = compact(render(
        ("class" -> modelClass) ~ ("version" -> thisFormatVersion) ~
          ("numFeatures" -> weights.size)))
      sc.parallelize(Seq(metadata), 1).saveAsTextFile(Loader.metadataPath(path))

      // Create Parquet data.
      val data = Data(weights, intercept)
      spark.createDataFrame(Seq(data)).repartition(1).write.parquet(Loader.dataPath(path))
    }

    /**
     * Helper method for loading GLM regression model data.
     * @param modelClass  String name for model class (used for error messages)
     * @param numFeatures  Number of features, to be checked against loaded data.
     *                     The length of the weights vector should equal numFeatures.
     */
    def loadData(sc: SparkContext, path: String, modelClass: String, numFeatures: Int): Data = {
      val dataPath = Loader.dataPath(path)
      val spark = SparkSession.builder().sparkContext(sc).getOrCreate()
      val dataRDD = spark.read.parquet(dataPath)
      val dataArray = dataRDD.select("weights", "intercept").take(1)
      assert(dataArray.length == 1, s"Unable to load $modelClass data from: $dataPath")
      val data = dataArray(0)
      assert(data.size == 2, s"Unable to load $modelClass data from: $dataPath")
      data match {
        case Row(weights: Vector, intercept: Double) =>
          assert(weights.size == numFeatures, s"Expected $numFeatures features, but" +
            s" found ${weights.size} features when loading $modelClass weights from $dataPath")
          Data(weights, intercept)
      }
    }
  }

}

相关信息

spark 源码目录

相关文章

spark ArrayWrappers 源码

spark InMemoryStore 源码

spark KVIndex 源码

spark KVStore 源码

spark KVStoreIterator 源码

spark KVStoreSerializer 源码

spark KVStoreView 源码

spark KVTypeInfo 源码

spark LevelDB 源码

spark LevelDBIterator 源码

0  赞