spark SchemaMergeUtils 源码

  • 2022-10-20
  • 浏览 (227)

spark SchemaMergeUtils 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/SchemaMergeUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.datasources

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileStatus, Path}

import org.apache.spark.SparkException
import org.apache.spark.internal.Logging
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.FileSourceOptions
import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap
import org.apache.spark.sql.errors.QueryExecutionErrors
import org.apache.spark.sql.types.StructType
import org.apache.spark.util.SerializableConfiguration

object SchemaMergeUtils extends Logging {
  /**
   * Figures out a merged Parquet/ORC schema with a distributed Spark job.
   */
  def mergeSchemasInParallel(
      sparkSession: SparkSession,
      parameters: Map[String, String],
      files: Seq[FileStatus],
      schemaReader: (Seq[FileStatus], Configuration, Boolean) => Seq[StructType])
      : Option[StructType] = {
    val serializedConf = new SerializableConfiguration(
      sparkSession.sessionState.newHadoopConfWithOptions(parameters))

    // !! HACK ALERT !!
    // Here is a hack for Parquet, but it can be used by Orc as well.
    //
    // Parquet requires `FileStatus`es to read footers.
    // Here we try to send cached `FileStatus`es to executor side to avoid fetching them again.
    // However, `FileStatus` is not `Serializable`
    // but only `Writable`.  What makes it worse, for some reason, `FileStatus` doesn't play well
    // with `SerializableWritable[T]` and always causes a weird `IllegalStateException`.  These
    // facts virtually prevents us to serialize `FileStatus`es.
    //
    // Since Parquet only relies on path and length information of those `FileStatus`es to read
    // footers, here we just extract them (which can be easily serialized), send them to executor
    // side, and resemble fake `FileStatus`es there.
    val partialFileStatusInfo = files.map(f => (f.getPath.toString, f.getLen))

    // Set the number of partitions to prevent following schema reads from generating many tasks
    // in case of a small number of orc files.
    val numParallelism = Math.min(Math.max(partialFileStatusInfo.size, 1),
      sparkSession.sparkContext.defaultParallelism)

    val ignoreCorruptFiles =
      new FileSourceOptions(CaseInsensitiveMap(parameters)).ignoreCorruptFiles

    // Issues a Spark job to read Parquet/ORC schema in parallel.
    val partiallyMergedSchemas =
      sparkSession
        .sparkContext
        .parallelize(partialFileStatusInfo, numParallelism)
        .mapPartitions { iterator =>
          // Resembles fake `FileStatus`es with serialized path and length information.
          val fakeFileStatuses = iterator.map { case (path, length) =>
            new FileStatus(length, false, 0, 0, 0, 0, null, null, null, new Path(path))
          }.toSeq

          val schemas = schemaReader(fakeFileStatuses, serializedConf.value, ignoreCorruptFiles)

          if (schemas.isEmpty) {
            Iterator.empty
          } else {
            var mergedSchema = schemas.head
            schemas.tail.foreach { schema =>
              try {
                mergedSchema = mergedSchema.merge(schema)
              } catch { case cause: SparkException =>
                throw QueryExecutionErrors.failedMergingSchemaError(schema, cause)
              }
            }
            Iterator.single(mergedSchema)
          }
        }.collect()

    if (partiallyMergedSchemas.isEmpty) {
      None
    } else {
      var finalSchema = partiallyMergedSchemas.head
      partiallyMergedSchemas.tail.foreach { schema =>
        try {
          finalSchema = finalSchema.merge(schema)
        } catch { case cause: SparkException =>
          throw QueryExecutionErrors.failedMergingSchemaError(schema, cause)
        }
      }
      Some(finalSchema)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AggregatePushDownUtils 源码

spark ApplyCharTypePadding 源码

spark BasicWriteStatsTracker 源码

spark BucketingUtils 源码

spark CatalogFileIndex 源码

spark CodecStreams 源码

spark DataSource 源码

spark DataSourceStrategy 源码

spark DataSourceUtils 源码

spark DaysWritable 源码

0  赞