hadoop ClientThrottlingAnalyzer 源码

  • 2022-10-20
  • 浏览 (194)

haddop ClientThrottlingAnalyzer 代码

文件路径:/hadoop-tools/hadoop-azure/src/main/java/org/apache/hadoop/fs/azure/ClientThrottlingAnalyzer.java

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.fs.azure;

import org.apache.hadoop.classification.VisibleForTesting;
import org.apache.hadoop.util.Preconditions;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.hadoop.classification.InterfaceAudience;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.AtomicReference;

/**
 * Throttles storage operations to minimize errors and maximum throughput. This
 * improves throughput by as much as 35% when the service throttles requests due
 * to exceeding account level ingress or egress limits.
 */
@InterfaceAudience.Private
class ClientThrottlingAnalyzer {
  private static final Logger LOG = LoggerFactory.getLogger(
      ClientThrottlingAnalyzer.class);
  private static final int DEFAULT_ANALYSIS_PERIOD_MS = 10 * 1000;
  private static final int MIN_ANALYSIS_PERIOD_MS = 1000;
  private static final int MAX_ANALYSIS_PERIOD_MS = 30000;
  private static final double MIN_ACCEPTABLE_ERROR_PERCENTAGE = .1;
  private static final double MAX_EQUILIBRIUM_ERROR_PERCENTAGE = 1;
  private static final double RAPID_SLEEP_DECREASE_FACTOR = .75;
  private static final double RAPID_SLEEP_DECREASE_TRANSITION_PERIOD_MS = 150
      * 1000;
  private static final double SLEEP_DECREASE_FACTOR = .975;
  private static final double SLEEP_INCREASE_FACTOR = 1.05;
  private int analysisPeriodMs;

  private volatile int sleepDuration = 0;
  private long consecutiveNoErrorCount = 0;
  private String name = null;
  private Timer timer = null;
  private AtomicReference<BlobOperationMetrics> blobMetrics = null;

  private ClientThrottlingAnalyzer() {
    // hide default constructor
  }

  /**
   * Creates an instance of the <code>ClientThrottlingAnalyzer</code> class with
   * the specified name.
   *
   * @param name a name used to identify this instance.
   *
   * @throws IllegalArgumentException if name is null or empty.
   */
  ClientThrottlingAnalyzer(String name) throws IllegalArgumentException {
    this(name, DEFAULT_ANALYSIS_PERIOD_MS);
  }

  /**
   * Creates an instance of the <code>ClientThrottlingAnalyzer</code> class with
   * the specified name and period.
   *
   * @param name A name used to identify this instance.
   *
   * @param period The frequency, in milliseconds, at which metrics are
   *              analyzed.
   *
   * @throws IllegalArgumentException
   *           If name is null or empty.
   *           If period is less than 1000 or greater than 30000 milliseconds.
   */
  ClientThrottlingAnalyzer(String name, int period)
      throws IllegalArgumentException {
    Preconditions.checkArgument(
        StringUtils.isNotEmpty(name),
        "The argument 'name' cannot be null or empty.");
    Preconditions.checkArgument(
        period >= MIN_ANALYSIS_PERIOD_MS && period <= MAX_ANALYSIS_PERIOD_MS,
      "The argument 'period' must be between 1000 and 30000.");
    this.name = name;
    this.analysisPeriodMs = period;
    this.blobMetrics = new AtomicReference<BlobOperationMetrics>(
        new BlobOperationMetrics(System.currentTimeMillis()));
    this.timer = new Timer(
        String.format("wasb-timer-client-throttling-analyzer-%s", name), true);
    this.timer.schedule(new TimerTaskImpl(),
        analysisPeriodMs,
        analysisPeriodMs);
  }

  /**
   * Updates metrics with results from the current storage operation.
   *
   * @param count The count of bytes transferred.
   *
   * @param isFailedOperation True if the operation failed; otherwise false.
   */
  public void addBytesTransferred(long count, boolean isFailedOperation) {
    BlobOperationMetrics metrics = blobMetrics.get();
    if (isFailedOperation) {
      metrics.bytesFailed.addAndGet(count);
      metrics.operationsFailed.incrementAndGet();
    } else {
      metrics.bytesSuccessful.addAndGet(count);
      metrics.operationsSuccessful.incrementAndGet();
    }
  }

  /**
   * Suspends the current storage operation, as necessary, to reduce throughput.
   */
  public void suspendIfNecessary() {
    int duration = sleepDuration;
    if (duration > 0) {
      try {
        Thread.sleep(duration);
      } catch (InterruptedException ie) {
        Thread.currentThread().interrupt();
      }
    }
  }

  @VisibleForTesting
  int getSleepDuration() {
    return sleepDuration;
  }

  private int analyzeMetricsAndUpdateSleepDuration(BlobOperationMetrics metrics,
                                                   int sleepDuration) {
    final double percentageConversionFactor = 100;
    double bytesFailed = metrics.bytesFailed.get();
    double bytesSuccessful = metrics.bytesSuccessful.get();
    double operationsFailed = metrics.operationsFailed.get();
    double operationsSuccessful = metrics.operationsSuccessful.get();
    double errorPercentage = (bytesFailed <= 0)
        ? 0
        : percentageConversionFactor
        * bytesFailed
        / (bytesFailed + bytesSuccessful);
    long periodMs = metrics.endTime - metrics.startTime;

    double newSleepDuration;

    if (errorPercentage < MIN_ACCEPTABLE_ERROR_PERCENTAGE) {
      ++consecutiveNoErrorCount;
      // Decrease sleepDuration in order to increase throughput.
      double reductionFactor =
          (consecutiveNoErrorCount * analysisPeriodMs
              >= RAPID_SLEEP_DECREASE_TRANSITION_PERIOD_MS)
              ? RAPID_SLEEP_DECREASE_FACTOR
              : SLEEP_DECREASE_FACTOR;

      newSleepDuration = sleepDuration * reductionFactor;
    } else if (errorPercentage < MAX_EQUILIBRIUM_ERROR_PERCENTAGE) {
      // Do not modify sleepDuration in order to stabilize throughput.
      newSleepDuration = sleepDuration;
    } else {
      // Increase sleepDuration in order to minimize error rate.
      consecutiveNoErrorCount = 0;

      // Increase sleep duration in order to reduce throughput and error rate.
      // First, calculate target throughput: bytesSuccessful / periodMs.
      // Next, calculate time required to send *all* data (assuming next period
      // is similar to previous) at the target throughput: (bytesSuccessful
      // + bytesFailed) * periodMs / bytesSuccessful. Next, subtract periodMs to
      // get the total additional delay needed.
      double additionalDelayNeeded = 5 * analysisPeriodMs;
      if (bytesSuccessful > 0) {
        additionalDelayNeeded = (bytesSuccessful + bytesFailed)
            * periodMs
            / bytesSuccessful
            - periodMs;
      }

      // amortize the additional delay needed across the estimated number of
      // requests during the next period
      newSleepDuration = additionalDelayNeeded
          / (operationsFailed + operationsSuccessful);

      final double maxSleepDuration = analysisPeriodMs;
      final double minSleepDuration = sleepDuration * SLEEP_INCREASE_FACTOR;

      // Add 1 ms to avoid rounding down and to decrease proximity to the server
      // side ingress/egress limit.  Ensure that the new sleep duration is
      // larger than the current one to more quickly reduce the number of
      // errors.  Don't allow the sleep duration to grow unbounded, after a
      // certain point throttling won't help, for example, if there are far too
      // many tasks/containers/nodes no amount of throttling will help.
      newSleepDuration = Math.max(newSleepDuration, minSleepDuration) + 1;
      newSleepDuration = Math.min(newSleepDuration, maxSleepDuration);
    }

    if (LOG.isDebugEnabled()) {
      LOG.debug(String.format(
          "%5.5s, %10d, %10d, %10d, %10d, %6.2f, %5d, %5d, %5d",
          name,
          (int) bytesFailed,
          (int) bytesSuccessful,
          (int) operationsFailed,
          (int) operationsSuccessful,
          errorPercentage,
          periodMs,
          (int) sleepDuration,
          (int) newSleepDuration));
    }

    return (int) newSleepDuration;
  }

  /**
   * Timer callback implementation for periodically analyzing metrics.
   */
  class TimerTaskImpl extends TimerTask {
    private AtomicInteger doingWork = new AtomicInteger(0);

    /**
     * Periodically analyzes a snapshot of the blob storage metrics and updates
     * the sleepDuration in order to appropriately throttle storage operations.
     */
    @Override
    public void run() {
      boolean doWork = false;
      try {
        doWork = doingWork.compareAndSet(0, 1);

        // prevent concurrent execution of this task
        if (!doWork) {
          return;
        }

        long now = System.currentTimeMillis();
        if (now - blobMetrics.get().startTime >= analysisPeriodMs) {
          BlobOperationMetrics oldMetrics = blobMetrics.getAndSet(
              new BlobOperationMetrics(now));
          oldMetrics.endTime = now;
          sleepDuration = analyzeMetricsAndUpdateSleepDuration(oldMetrics,
              sleepDuration);
        }
      }
      finally {
        if (doWork) {
          doingWork.set(0);
        }
      }
    }
  }

  /**
   * Stores blob operation metrics during each analysis period.
   */
  static class BlobOperationMetrics {
    private AtomicLong bytesFailed;
    private AtomicLong bytesSuccessful;
    private AtomicLong operationsFailed;
    private AtomicLong operationsSuccessful;
    private long endTime;
    private long startTime;

    BlobOperationMetrics(long startTime) {
      this.startTime = startTime;
      this.bytesFailed = new AtomicLong();
      this.bytesSuccessful = new AtomicLong();
      this.operationsFailed = new AtomicLong();
      this.operationsSuccessful = new AtomicLong();
    }
  }
}

相关信息

hadoop 源码目录

相关文章

hadoop AzureException 源码

hadoop AzureFileSystemThreadPoolExecutor 源码

hadoop AzureFileSystemThreadTask 源码

hadoop AzureLinkedStack 源码

hadoop AzureNativeFileSystemStore 源码

hadoop BlobMaterialization 源码

hadoop BlobOperationDescriptor 源码

hadoop BlockBlobAppendStream 源码

hadoop BlockBlobInputStream 源码

hadoop CachingAuthorizer 源码

0  赞