spark JavaStatefulNetworkWordCount 源码
spark JavaStatefulNetworkWordCount 代码
文件路径:/examples/src/main/java/org/apache/spark/examples/streaming/JavaStatefulNetworkWordCount.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.streaming;
import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern;
import scala.Tuple2;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.*;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.Optional;
import org.apache.spark.api.java.StorageLevels;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.State;
import org.apache.spark.streaming.StateSpec;
import org.apache.spark.streaming.api.java.*;
/**
* Counts words cumulatively in UTF8 encoded, '\n' delimited text received from the network every
* second starting with initial value of word count.
* Usage: JavaStatefulNetworkWordCount <hostname> <port>
* <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive
* data.
* <p>
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example
* org.apache.spark.examples.streaming.JavaStatefulNetworkWordCount localhost 9999`
*/
public class JavaStatefulNetworkWordCount {
private static final Pattern SPACE = Pattern.compile(" ");
public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: JavaStatefulNetworkWordCount <hostname> <port>");
System.exit(1);
}
StreamingExamples.setStreamingLogLevels();
// Create the context with a 1 second batch size
SparkConf sparkConf = new SparkConf().setAppName("JavaStatefulNetworkWordCount");
JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.seconds(1));
ssc.checkpoint(".");
// Initial state RDD input to mapWithState
List<Tuple2<String, Integer>> tuples =
Arrays.asList(new Tuple2<>("hello", 1), new Tuple2<>("world", 1));
JavaPairRDD<String, Integer> initialRDD = ssc.sparkContext().parallelizePairs(tuples);
JavaReceiverInputDStream<String> lines = ssc.socketTextStream(
args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER_2);
JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(SPACE.split(x)).iterator());
JavaPairDStream<String, Integer> wordsDstream = words.mapToPair(s -> new Tuple2<>(s, 1));
// Update the cumulative count function
Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>> mappingFunc =
(word, one, state) -> {
int sum = one.orElse(0) + (state.exists() ? state.get() : 0);
Tuple2<String, Integer> output = new Tuple2<>(word, sum);
state.update(sum);
return output;
};
// DStream made of get cumulative counts that get updated in every batch
JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> stateDstream =
wordsDstream.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD));
stateDstream.print();
ssc.start();
ssc.awaitTermination();
}
}
相关信息
相关文章
spark JavaDirectKafkaWordCount 源码
spark JavaDirectKerberizedKafkaWordCount 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦