kubernetes value 源码
kubernetes value 代码
文件路径:/staging/src/k8s.io/apiextensions-apiserver/third_party/forked/celopenapi/model/value.go
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"reflect"
"sync"
"time"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
)
// EncodeStyle is a hint for string encoding of parsed values.
type EncodeStyle int
const (
// BlockValueStyle is the default string encoding which preserves whitespace and newlines.
BlockValueStyle EncodeStyle = iota
// FlowValueStyle indicates that the string is an inline representation of complex types.
FlowValueStyle
// FoldedValueStyle is a multiline string with whitespace and newlines trimmed to a single
// a whitespace. Repeated newlines are replaced with a single newline rather than a single
// whitespace.
FoldedValueStyle
// LiteralStyle is a multiline string that preserves newlines, but trims all other whitespace
// to a single character.
LiteralStyle
)
// NewEmptyDynValue returns the zero-valued DynValue.
func NewEmptyDynValue() *DynValue {
// note: 0 is not a valid parse node identifier.
dv, _ := NewDynValue(0, nil)
return dv
}
// NewDynValue returns a DynValue that corresponds to a parse node id and value.
func NewDynValue(id int64, val interface{}) (*DynValue, error) {
dv := &DynValue{ID: id}
err := dv.SetValue(val)
return dv, err
}
// DynValue is a dynamically typed value used to describe unstructured content.
// Whether the value has the desired type is determined by where it is used within the Instance or
// Template, and whether there are schemas which might enforce a more rigid type definition.
type DynValue struct {
ID int64
EncodeStyle EncodeStyle
value interface{}
exprValue ref.Val
declType *DeclType
}
// DeclType returns the policy model type of the dyn value.
func (dv *DynValue) DeclType() *DeclType {
return dv.declType
}
// ConvertToNative is an implementation of the CEL ref.Val method used to adapt between CEL types
// and Go-native types.
//
// The default behavior of this method is to first convert to a CEL type which has a well-defined
// set of conversion behaviors and proxy to the CEL ConvertToNative method for the type.
func (dv *DynValue) ConvertToNative(typeDesc reflect.Type) (interface{}, error) {
ev := dv.ExprValue()
if types.IsError(ev) {
return nil, ev.(*types.Err)
}
return ev.ConvertToNative(typeDesc)
}
// Equal returns whether the dyn value is equal to a given CEL value.
func (dv *DynValue) Equal(other ref.Val) ref.Val {
dvType := dv.Type()
otherType := other.Type()
// Preserve CEL's homogeneous equality constraint.
if dvType.TypeName() != otherType.TypeName() {
return types.MaybeNoSuchOverloadErr(other)
}
switch v := dv.value.(type) {
case ref.Val:
return v.Equal(other)
case PlainTextValue:
return celBool(string(v) == other.Value().(string))
case *MultilineStringValue:
return celBool(v.Value == other.Value().(string))
case time.Duration:
otherDuration := other.Value().(time.Duration)
return celBool(v == otherDuration)
case time.Time:
otherTimestamp := other.Value().(time.Time)
return celBool(v.Equal(otherTimestamp))
default:
return celBool(reflect.DeepEqual(v, other.Value()))
}
}
// ExprValue converts the DynValue into a CEL value.
func (dv *DynValue) ExprValue() ref.Val {
return dv.exprValue
}
// Value returns the underlying value held by this reference.
func (dv *DynValue) Value() interface{} {
return dv.value
}
// SetValue updates the underlying value held by this reference.
func (dv *DynValue) SetValue(value interface{}) error {
dv.value = value
var err error
dv.exprValue, dv.declType, err = exprValue(value)
return err
}
// Type returns the CEL type for the given value.
func (dv *DynValue) Type() ref.Type {
return dv.ExprValue().Type()
}
func exprValue(value interface{}) (ref.Val, *DeclType, error) {
switch v := value.(type) {
case bool:
return types.Bool(v), BoolType, nil
case []byte:
return types.Bytes(v), BytesType, nil
case float64:
return types.Double(v), DoubleType, nil
case int64:
return types.Int(v), IntType, nil
case string:
return types.String(v), StringType, nil
case uint64:
return types.Uint(v), UintType, nil
case time.Duration:
return types.Duration{Duration: v}, DurationType, nil
case time.Time:
return types.Timestamp{Time: v}, TimestampType, nil
case types.Null:
return v, NullType, nil
case *ListValue:
return v, ListType, nil
case *MapValue:
return v, MapType, nil
case *ObjectValue:
return v, v.objectType, nil
default:
return nil, unknownType, fmt.Errorf("unsupported type: (%T)%v", v, v)
}
}
// PlainTextValue is a text string literal which must not be treated as an expression.
type PlainTextValue string
// MultilineStringValue is a multiline string value which has been parsed in a way which omits
// whitespace as well as a raw form which preserves whitespace.
type MultilineStringValue struct {
Value string
Raw string
}
func newStructValue() *structValue {
return &structValue{
Fields: []*Field{},
fieldMap: map[string]*Field{},
}
}
type structValue struct {
Fields []*Field
fieldMap map[string]*Field
}
// AddField appends a MapField to the MapValue and indexes the field by name.
func (sv *structValue) AddField(field *Field) {
sv.Fields = append(sv.Fields, field)
sv.fieldMap[field.Name] = field
}
// ConvertToNative converts the MapValue type to a native go types.
func (sv *structValue) ConvertToNative(typeDesc reflect.Type) (interface{}, error) {
if typeDesc.Kind() != reflect.Map &&
typeDesc.Kind() != reflect.Struct &&
typeDesc.Kind() != reflect.Pointer &&
typeDesc.Kind() != reflect.Interface {
return nil, fmt.Errorf("type conversion error from object to '%v'", typeDesc)
}
// Unwrap pointers, but track their use.
isPtr := false
if typeDesc.Kind() == reflect.Pointer {
tk := typeDesc
typeDesc = typeDesc.Elem()
if typeDesc.Kind() == reflect.Pointer {
return nil, fmt.Errorf("unsupported type conversion to '%v'", tk)
}
isPtr = true
}
if typeDesc.Kind() == reflect.Map {
keyType := typeDesc.Key()
if keyType.Kind() != reflect.String && keyType.Kind() != reflect.Interface {
return nil, fmt.Errorf("object fields cannot be converted to type '%v'", keyType)
}
elemType := typeDesc.Elem()
sz := len(sv.fieldMap)
ntvMap := reflect.MakeMapWithSize(typeDesc, sz)
for name, val := range sv.fieldMap {
refVal, err := val.Ref.ConvertToNative(elemType)
if err != nil {
return nil, err
}
ntvMap.SetMapIndex(reflect.ValueOf(name), reflect.ValueOf(refVal))
}
return ntvMap.Interface(), nil
}
if typeDesc.Kind() == reflect.Struct {
ntvObjPtr := reflect.New(typeDesc)
ntvObj := ntvObjPtr.Elem()
for name, val := range sv.fieldMap {
f := ntvObj.FieldByName(name)
if !f.IsValid() {
return nil, fmt.Errorf("type conversion error, no such field %s in type %v",
name, typeDesc)
}
fv, err := val.Ref.ConvertToNative(f.Type())
if err != nil {
return nil, err
}
f.Set(reflect.ValueOf(fv))
}
if isPtr {
return ntvObjPtr.Interface(), nil
}
return ntvObj.Interface(), nil
}
return nil, fmt.Errorf("type conversion error from object to '%v'", typeDesc)
}
// GetField returns a MapField by name if one exists.
func (sv *structValue) GetField(name string) (*Field, bool) {
field, found := sv.fieldMap[name]
return field, found
}
// IsSet returns whether the given field, which is defined, has also been set.
func (sv *structValue) IsSet(key ref.Val) ref.Val {
k, ok := key.(types.String)
if !ok {
return types.MaybeNoSuchOverloadErr(key)
}
name := string(k)
_, found := sv.fieldMap[name]
return celBool(found)
}
// NewObjectValue creates a struct value with a schema type and returns the empty ObjectValue.
func NewObjectValue(sType *DeclType) *ObjectValue {
return &ObjectValue{
structValue: newStructValue(),
objectType: sType,
}
}
// ObjectValue is a struct with a custom schema type which indicates the fields and types
// associated with the structure.
type ObjectValue struct {
*structValue
objectType *DeclType
}
// ConvertToType is an implementation of the CEL ref.Val interface method.
func (o *ObjectValue) ConvertToType(t ref.Type) ref.Val {
if t == types.TypeType {
return types.NewObjectTypeValue(o.objectType.TypeName())
}
if t.TypeName() == o.objectType.TypeName() {
return o
}
return types.NewErr("type conversion error from '%s' to '%s'", o.Type(), t)
}
// Equal returns true if the two object types are equal and their field values are equal.
func (o *ObjectValue) Equal(other ref.Val) ref.Val {
// Preserve CEL's homogeneous equality semantics.
if o.objectType.TypeName() != other.Type().TypeName() {
return types.MaybeNoSuchOverloadErr(other)
}
o2 := other.(traits.Indexer)
for name := range o.objectType.Fields {
k := types.String(name)
v := o.Get(k)
ov := o2.Get(k)
vEq := v.Equal(ov)
if vEq != types.True {
return vEq
}
}
return types.True
}
// Get returns the value of the specified field.
//
// If the field is set, its value is returned. If the field is not set, the default value for the
// field is returned thus allowing for safe-traversal and preserving proto-like field traversal
// semantics for Open API Schema backed types.
func (o *ObjectValue) Get(name ref.Val) ref.Val {
n, ok := name.(types.String)
if !ok {
return types.MaybeNoSuchOverloadErr(n)
}
nameStr := string(n)
field, found := o.fieldMap[nameStr]
if found {
return field.Ref.ExprValue()
}
fieldDef, found := o.objectType.Fields[nameStr]
if !found {
return types.NewErr("no such field: %s", nameStr)
}
defValue := fieldDef.DefaultValue()
if defValue != nil {
return defValue
}
return types.NewErr("no default for type: %s", fieldDef.TypeName())
}
// Type returns the CEL type value of the object.
func (o *ObjectValue) Type() ref.Type {
return o.objectType
}
// Value returns the Go-native representation of the object.
func (o *ObjectValue) Value() interface{} {
return o
}
// NewMapValue returns an empty MapValue.
func NewMapValue() *MapValue {
return &MapValue{
structValue: newStructValue(),
}
}
// MapValue declares an object with a set of named fields whose values are dynamically typed.
type MapValue struct {
*structValue
}
// ConvertToObject produces an ObjectValue from the MapValue with the associated schema type.
//
// The conversion is shallow and the memory shared between the Object and Map as all references
// to the map are expected to be replaced with the Object reference.
func (m *MapValue) ConvertToObject(declType *DeclType) *ObjectValue {
return &ObjectValue{
structValue: m.structValue,
objectType: declType,
}
}
// Contains returns whether the given key is contained in the MapValue.
func (m *MapValue) Contains(key ref.Val) ref.Val {
v, found := m.Find(key)
if v != nil && types.IsUnknownOrError(v) {
return v
}
return celBool(found)
}
// ConvertToType converts the MapValue to another CEL type, if possible.
func (m *MapValue) ConvertToType(t ref.Type) ref.Val {
switch t {
case types.MapType:
return m
case types.TypeType:
return types.MapType
}
return types.NewErr("type conversion error from '%s' to '%s'", m.Type(), t)
}
// Equal returns true if the maps are of the same size, have the same keys, and the key-values
// from each map are equal.
func (m *MapValue) Equal(other ref.Val) ref.Val {
oMap, isMap := other.(traits.Mapper)
if !isMap {
return types.MaybeNoSuchOverloadErr(other)
}
if m.Size() != oMap.Size() {
return types.False
}
for name, field := range m.fieldMap {
k := types.String(name)
ov, found := oMap.Find(k)
if !found {
return types.False
}
v := field.Ref.ExprValue()
vEq := v.Equal(ov)
if vEq != types.True {
return vEq
}
}
return types.True
}
// Find returns the value for the key in the map, if found.
func (m *MapValue) Find(name ref.Val) (ref.Val, bool) {
// Currently only maps with string keys are supported as this is best aligned with JSON,
// and also much simpler to support.
n, ok := name.(types.String)
if !ok {
return types.MaybeNoSuchOverloadErr(n), true
}
nameStr := string(n)
field, found := m.fieldMap[nameStr]
if found {
return field.Ref.ExprValue(), true
}
return nil, false
}
// Get returns the value for the key in the map, or error if not found.
func (m *MapValue) Get(key ref.Val) ref.Val {
v, found := m.Find(key)
if found {
return v
}
return types.ValOrErr(key, "no such key: %v", key)
}
// Iterator produces a traits.Iterator which walks over the map keys.
//
// The Iterator is frequently used within comprehensions.
func (m *MapValue) Iterator() traits.Iterator {
keys := make([]ref.Val, len(m.fieldMap))
i := 0
for k := range m.fieldMap {
keys[i] = types.String(k)
i++
}
return &baseMapIterator{
baseVal: &baseVal{},
keys: keys,
}
}
// Size returns the number of keys in the map.
func (m *MapValue) Size() ref.Val {
return types.Int(len(m.Fields))
}
// Type returns the CEL ref.Type for the map.
func (m *MapValue) Type() ref.Type {
return types.MapType
}
// Value returns the Go-native representation of the MapValue.
func (m *MapValue) Value() interface{} {
return m
}
type baseMapIterator struct {
*baseVal
keys []ref.Val
idx int
}
// HasNext implements the traits.Iterator interface method.
func (it *baseMapIterator) HasNext() ref.Val {
if it.idx < len(it.keys) {
return types.True
}
return types.False
}
// Next implements the traits.Iterator interface method.
func (it *baseMapIterator) Next() ref.Val {
key := it.keys[it.idx]
it.idx++
return key
}
// Type implements the CEL ref.Val interface metohd.
func (it *baseMapIterator) Type() ref.Type {
return types.IteratorType
}
// NewField returns a MapField instance with an empty DynValue that refers to the
// specified parse node id and field name.
func NewField(id int64, name string) *Field {
return &Field{
ID: id,
Name: name,
Ref: NewEmptyDynValue(),
}
}
// Field specifies a field name and a reference to a dynamic value.
type Field struct {
ID int64
Name string
Ref *DynValue
}
// NewListValue returns an empty ListValue instance.
func NewListValue() *ListValue {
return &ListValue{
Entries: []*DynValue{},
}
}
// ListValue contains a list of dynamically typed entries.
type ListValue struct {
Entries []*DynValue
initValueSet sync.Once
valueSet map[ref.Val]struct{}
}
// Add concatenates two lists together to produce a new CEL list value.
func (lv *ListValue) Add(other ref.Val) ref.Val {
oArr, isArr := other.(traits.Lister)
if !isArr {
return types.MaybeNoSuchOverloadErr(other)
}
szRight := len(lv.Entries)
szLeft := int(oArr.Size().(types.Int))
sz := szRight + szLeft
combo := make([]ref.Val, sz)
for i := 0; i < szRight; i++ {
combo[i] = lv.Entries[i].ExprValue()
}
for i := 0; i < szLeft; i++ {
combo[i+szRight] = oArr.Get(types.Int(i))
}
return types.DefaultTypeAdapter.NativeToValue(combo)
}
// Append adds another entry into the ListValue.
func (lv *ListValue) Append(entry *DynValue) {
lv.Entries = append(lv.Entries, entry)
// The append resets all previously built indices.
lv.initValueSet = sync.Once{}
}
// Contains returns whether the input `val` is equal to an element in the list.
//
// If any pair-wise comparison between the input value and the list element is an error, the
// operation will return an error.
func (lv *ListValue) Contains(val ref.Val) ref.Val {
if types.IsUnknownOrError(val) {
return val
}
lv.initValueSet.Do(lv.finalizeValueSet)
if lv.valueSet != nil {
_, found := lv.valueSet[val]
if found {
return types.True
}
// Instead of returning false, ensure that CEL's heterogeneous equality constraint
// is satisfied by allowing pair-wise equality behavior to determine the outcome.
}
var err ref.Val
sz := len(lv.Entries)
for i := 0; i < sz; i++ {
elem := lv.Entries[i]
cmp := elem.Equal(val)
b, ok := cmp.(types.Bool)
if !ok && err == nil {
err = types.MaybeNoSuchOverloadErr(cmp)
}
if b == types.True {
return types.True
}
}
if err != nil {
return err
}
return types.False
}
// ConvertToNative is an implementation of the CEL ref.Val method used to adapt between CEL types
// and Go-native array-like types.
func (lv *ListValue) ConvertToNative(typeDesc reflect.Type) (interface{}, error) {
// Non-list conversion.
if typeDesc.Kind() != reflect.Slice &&
typeDesc.Kind() != reflect.Array &&
typeDesc.Kind() != reflect.Interface {
return nil, fmt.Errorf("type conversion error from list to '%v'", typeDesc)
}
// If the list is already assignable to the desired type return it.
if reflect.TypeOf(lv).AssignableTo(typeDesc) {
return lv, nil
}
// List conversion.
otherElem := typeDesc.Elem()
// Allow the element ConvertToNative() function to determine whether conversion is possible.
sz := len(lv.Entries)
nativeList := reflect.MakeSlice(typeDesc, int(sz), int(sz))
for i := 0; i < sz; i++ {
elem := lv.Entries[i]
nativeElemVal, err := elem.ConvertToNative(otherElem)
if err != nil {
return nil, err
}
nativeList.Index(int(i)).Set(reflect.ValueOf(nativeElemVal))
}
return nativeList.Interface(), nil
}
// ConvertToType converts the ListValue to another CEL type.
func (lv *ListValue) ConvertToType(t ref.Type) ref.Val {
switch t {
case types.ListType:
return lv
case types.TypeType:
return types.ListType
}
return types.NewErr("type conversion error from '%s' to '%s'", ListType, t)
}
// Equal returns true if two lists are of the same size, and the values at each index are also
// equal.
func (lv *ListValue) Equal(other ref.Val) ref.Val {
oArr, isArr := other.(traits.Lister)
if !isArr {
return types.MaybeNoSuchOverloadErr(other)
}
sz := types.Int(len(lv.Entries))
if sz != oArr.Size() {
return types.False
}
for i := types.Int(0); i < sz; i++ {
cmp := lv.Get(i).Equal(oArr.Get(i))
if cmp != types.True {
return cmp
}
}
return types.True
}
// Get returns the value at the given index.
//
// If the index is negative or greater than the size of the list, an error is returned.
func (lv *ListValue) Get(idx ref.Val) ref.Val {
iv, isInt := idx.(types.Int)
if !isInt {
return types.ValOrErr(idx, "unsupported index: %v", idx)
}
i := int(iv)
if i < 0 || i >= len(lv.Entries) {
return types.NewErr("index out of bounds: %v", idx)
}
return lv.Entries[i].ExprValue()
}
// Iterator produces a traits.Iterator suitable for use in CEL comprehension macros.
func (lv *ListValue) Iterator() traits.Iterator {
return &baseListIterator{
getter: lv.Get,
sz: len(lv.Entries),
}
}
// Size returns the number of elements in the list.
func (lv *ListValue) Size() ref.Val {
return types.Int(len(lv.Entries))
}
// Type returns the CEL ref.Type for the list.
func (lv *ListValue) Type() ref.Type {
return types.ListType
}
// Value returns the Go-native value.
func (lv *ListValue) Value() interface{} {
return lv
}
// finalizeValueSet inspects the ListValue entries in order to make internal optimizations once all list
// entries are known.
func (lv *ListValue) finalizeValueSet() {
valueSet := make(map[ref.Val]struct{})
for _, e := range lv.Entries {
switch e.value.(type) {
case bool, float64, int64, string, uint64, types.Null, PlainTextValue:
if valueSet != nil {
valueSet[e.ExprValue()] = struct{}{}
}
default:
lv.valueSet = nil
return
}
}
lv.valueSet = valueSet
}
type baseVal struct{}
func (*baseVal) ConvertToNative(typeDesc reflect.Type) (interface{}, error) {
return nil, fmt.Errorf("unsupported native conversion to: %v", typeDesc)
}
func (*baseVal) ConvertToType(t ref.Type) ref.Val {
return types.NewErr("unsupported type conversion to: %v", t)
}
func (*baseVal) Equal(other ref.Val) ref.Val {
return types.NewErr("unsupported equality test between instances")
}
func (v *baseVal) Value() interface{} {
return nil
}
type baseListIterator struct {
*baseVal
getter func(idx ref.Val) ref.Val
sz int
idx int
}
func (it *baseListIterator) HasNext() ref.Val {
if it.idx < it.sz {
return types.True
}
return types.False
}
func (it *baseListIterator) Next() ref.Val {
v := it.getter(types.Int(it.idx))
it.idx++
return v
}
func (it *baseListIterator) Type() ref.Type {
return types.IteratorType
}
func celBool(pred bool) ref.Val {
if pred {
return types.True
}
return types.False
}
var unknownType = &DeclType{name: "unknown", MinSerializedSize: 1}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦