spark CSVFileFormat 源码
spark CSVFileFormat 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/csv/CSVFileFormat.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.datasources.csv
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileStatus, Path}
import org.apache.hadoop.mapreduce._
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.csv.{CSVHeaderChecker, CSVOptions, UnivocityParser}
import org.apache.spark.sql.catalyst.expressions.ExprUtils
import org.apache.spark.sql.catalyst.util.CompressionCodecs
import org.apache.spark.sql.execution.datasources._
import org.apache.spark.sql.sources._
import org.apache.spark.sql.types._
import org.apache.spark.util.SerializableConfiguration
/**
* Provides access to CSV data from pure SQL statements.
*/
class CSVFileFormat extends TextBasedFileFormat with DataSourceRegister {
override def shortName(): String = "csv"
override def isSplitable(
sparkSession: SparkSession,
options: Map[String, String],
path: Path): Boolean = {
val parsedOptions = new CSVOptions(
options,
columnPruning = sparkSession.sessionState.conf.csvColumnPruning,
sparkSession.sessionState.conf.sessionLocalTimeZone)
val csvDataSource = CSVDataSource(parsedOptions)
csvDataSource.isSplitable && super.isSplitable(sparkSession, options, path)
}
override def inferSchema(
sparkSession: SparkSession,
options: Map[String, String],
files: Seq[FileStatus]): Option[StructType] = {
val parsedOptions = new CSVOptions(
options,
columnPruning = sparkSession.sessionState.conf.csvColumnPruning,
sparkSession.sessionState.conf.sessionLocalTimeZone)
CSVDataSource(parsedOptions).inferSchema(sparkSession, files, parsedOptions)
}
override def prepareWrite(
sparkSession: SparkSession,
job: Job,
options: Map[String, String],
dataSchema: StructType): OutputWriterFactory = {
val conf = job.getConfiguration
val csvOptions = new CSVOptions(
options,
columnPruning = sparkSession.sessionState.conf.csvColumnPruning,
sparkSession.sessionState.conf.sessionLocalTimeZone)
csvOptions.compressionCodec.foreach { codec =>
CompressionCodecs.setCodecConfiguration(conf, codec)
}
new OutputWriterFactory {
override def newInstance(
path: String,
dataSchema: StructType,
context: TaskAttemptContext): OutputWriter = {
new CsvOutputWriter(path, dataSchema, context, csvOptions)
}
override def getFileExtension(context: TaskAttemptContext): String = {
".csv" + CodecStreams.getCompressionExtension(context)
}
}
}
override def buildReader(
sparkSession: SparkSession,
dataSchema: StructType,
partitionSchema: StructType,
requiredSchema: StructType,
filters: Seq[Filter],
options: Map[String, String],
hadoopConf: Configuration): (PartitionedFile) => Iterator[InternalRow] = {
val broadcastedHadoopConf =
sparkSession.sparkContext.broadcast(new SerializableConfiguration(hadoopConf))
val columnPruning = sparkSession.sessionState.conf.csvColumnPruning
val parsedOptions = new CSVOptions(
options,
columnPruning,
sparkSession.sessionState.conf.sessionLocalTimeZone,
sparkSession.sessionState.conf.columnNameOfCorruptRecord)
// Check a field requirement for corrupt records here to throw an exception in a driver side
ExprUtils.verifyColumnNameOfCorruptRecord(dataSchema, parsedOptions.columnNameOfCorruptRecord)
// Don't push any filter which refers to the "virtual" column which cannot present in the input.
// Such filters will be applied later on the upper layer.
val actualFilters =
filters.filterNot(_.references.contains(parsedOptions.columnNameOfCorruptRecord))
(file: PartitionedFile) => {
val conf = broadcastedHadoopConf.value.value
val actualDataSchema = StructType(
dataSchema.filterNot(_.name == parsedOptions.columnNameOfCorruptRecord))
val actualRequiredSchema = StructType(
requiredSchema.filterNot(_.name == parsedOptions.columnNameOfCorruptRecord))
val parser = new UnivocityParser(
actualDataSchema,
actualRequiredSchema,
parsedOptions,
actualFilters)
val schema = if (columnPruning) actualRequiredSchema else actualDataSchema
val isStartOfFile = file.start == 0
val headerChecker = new CSVHeaderChecker(
schema, parsedOptions, source = s"CSV file: ${file.filePath}", isStartOfFile)
CSVDataSource(parsedOptions).readFile(
conf,
file,
parser,
headerChecker,
requiredSchema)
}
}
override def toString: String = "CSV"
override def hashCode(): Int = getClass.hashCode()
override def equals(other: Any): Boolean = other.isInstanceOf[CSVFileFormat]
override def supportDataType(dataType: DataType): Boolean = dataType match {
case _: AtomicType => true
case udt: UserDefinedType[_] => supportDataType(udt.sqlType)
case _ => false
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦