spark UnaryTransformerExample 源码

  • 2022-10-20
  • 浏览 (241)

spark UnaryTransformerExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/ml/UnaryTransformerExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.UnaryTransformer
import org.apache.spark.ml.param.DoubleParam
import org.apache.spark.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.types.{DataType, DataTypes}
import org.apache.spark.util.Utils
// $example off$

/**
 * An example demonstrating creating a custom [[org.apache.spark.ml.Transformer]] using
 * the [[UnaryTransformer]] abstraction.
 *
 * Run with
 * {{{
 * bin/run-example ml.UnaryTransformerExample
 * }}}
 */
object UnaryTransformerExample {

  // $example on$
  /**
   * Simple Transformer which adds a constant value to input Doubles.
   *
   * [[UnaryTransformer]] can be used to create a stage usable within Pipelines.
   * It defines parameters for specifying input and output columns:
   * [[UnaryTransformer.inputCol]] and [[UnaryTransformer.outputCol]].
   * It can optionally handle schema validation.
   *
   * [[DefaultParamsWritable]] provides a default implementation for persisting instances
   * of this Transformer.
   */
  class MyTransformer(override val uid: String)
    extends UnaryTransformer[Double, Double, MyTransformer] with DefaultParamsWritable {

    final val shift: DoubleParam = new DoubleParam(this, "shift", "Value added to input")

    def getShift: Double = $(shift)

    def setShift(value: Double): this.type = set(shift, value)

    def this() = this(Identifiable.randomUID("myT"))

    override protected def createTransformFunc: Double => Double = (input: Double) => {
      input + $(shift)
    }

    override protected def outputDataType: DataType = DataTypes.DoubleType

    override protected def validateInputType(inputType: DataType): Unit = {
      require(inputType == DataTypes.DoubleType, s"Bad input type: $inputType. Requires Double.")
    }
  }

  /**
   * Companion object for our simple Transformer.
   *
   * [[DefaultParamsReadable]] provides a default implementation for loading instances
   * of this Transformer which were persisted using [[DefaultParamsWritable]].
   */
  object MyTransformer extends DefaultParamsReadable[MyTransformer]
  // $example off$

  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("UnaryTransformerExample")
      .getOrCreate()

    // $example on$
    val myTransformer = new MyTransformer()
      .setShift(0.5)
      .setInputCol("input")
      .setOutputCol("output")

    // Create data, transform, and display it.
    val data = spark.range(0, 5).toDF("input")
      .select(col("input").cast("double").as("input"))
    val result = myTransformer.transform(data)
    println("Transformed by adding constant value")
    result.show()

    // Save and load the Transformer.
    val tmpDir = Utils.createTempDir()
    val dirName = tmpDir.getCanonicalPath
    myTransformer.write.overwrite().save(dirName)
    val sameTransformer = MyTransformer.load(dirName)

    // Transform the data to show the results are identical.
    println("Same transform applied from loaded model")
    val sameResult = sameTransformer.transform(data)
    sameResult.show()

    Utils.deleteRecursively(tmpDir)
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionExample 源码

spark ALSExample 源码

spark BinarizerExample 源码

spark BisectingKMeansExample 源码

spark BucketedRandomProjectionLSHExample 源码

spark BucketizerExample 源码

spark ChiSqSelectorExample 源码

spark ChiSquareTestExample 源码

spark CorrelationExample 源码

spark CountVectorizerExample 源码

0  赞