spark Utils 源码

  • 2022-10-20
  • 浏览 (233)

spark Utils 代码

文件路径:/mllib-local/src/main/scala/org/apache/spark/ml/impl/Utils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.impl

import org.apache.spark.ml.linalg.BLAS

private[spark] object Utils {

  lazy val EPSILON = {
    var eps = 1.0
    while ((1.0 + (eps / 2.0)) != 1.0) {
      eps /= 2.0
    }
    eps
  }

  /**
   * Convert an n * (n + 1) / 2 dimension array representing the upper triangular part of a matrix
   * into an n * n array representing the full symmetric matrix (column major).
   *
   * @param n The order of the n by n matrix.
   * @param triangularValues The upper triangular part of the matrix packed in an array
   *                         (column major).
   * @return A dense matrix which represents the symmetric matrix in column major.
   */
  def unpackUpperTriangular(
      n: Int,
      triangularValues: Array[Double]): Array[Double] = {
    val symmetricValues = new Array[Double](n * n)
    var r = 0
    var i = 0
    while (i < n) {
      var j = 0
      while (j <= i) {
        symmetricValues(i * n + j) = triangularValues(r)
        symmetricValues(j * n + i) = triangularValues(r)
        r += 1
        j += 1
      }
      i += 1
    }
    symmetricValues
  }

  /**
   * Indexing in an array representing the upper triangular part of a matrix
   * into an n * n array representing the full symmetric matrix (column major).
   *    val symmetricValues = unpackUpperTriangularMatrix(n, triangularValues)
   *    val matrix = new DenseMatrix(n, n, symmetricValues)
   *    val index = indexUpperTriangularMatrix(n, i, j)
   *    then: symmetricValues(index) == matrix(i, j)
   *
   * @param n The order of the n by n matrix.
   */
  def indexUpperTriangular(
      n: Int,
      i: Int,
      j: Int): Int = {
    require(i >= 0 && i < n, s"Expected 0 <= i < $n, got i = $i.")
    require(j >= 0 && j < n, s"Expected 0 <= j < $n, got j = $j.")
    if (i <= j) {
      j * (j + 1) / 2 + i
    } else {
      i * (i + 1) / 2 + j
    }
  }

  /**
   * When `x` is positive and large, computing `math.log(1 + math.exp(x))` will lead to arithmetic
   * overflow. This will happen when `x &gt; 709.78` which is not a very large number.
   * It can be addressed by rewriting the formula into `x + math.log1p(math.exp(-x))`
   * when `x` is positive.
   * @param x a floating-point value as input.
   * @return the result of `math.log(1 + math.exp(x))`.
   */
  def log1pExp(x: Double): Double = {
    if (x > 0) {
      x + math.log1p(math.exp(-x))
    } else {
      math.log1p(math.exp(x))
    }
  }

  /**
   * Perform in-place softmax conversion.
   */
  def softmax(array: Array[Double]): Unit =
    softmax(array, array.length, 0, 1, array)

  /**
   * Perform softmax conversion.
   */
  def softmax(
      input: Array[Double],
      n: Int,
      offset: Int,
      step: Int,
      output: Array[Double]): Unit = {
    var maxValue = Double.MinValue
    var i = offset
    val end = offset + step * n
    while (i < end) {
      val v = input(i)
      if (v.isPosInfinity) {
        BLAS.javaBLAS.dscal(n, 0.0, output, offset, step)
        output(i) = 1.0
        return
      } else if (v > maxValue) {
        maxValue = v
      }
      i += step
    }

    var sum = 0.0
    i = offset
    while (i < end) {
      val exp = math.exp(input(i) - maxValue)
      output(i) = exp
      sum += exp
      i += step
    }

    BLAS.javaBLAS.dscal(n, 1.0 / sum, output, offset, step)
  }
}

相关信息

spark 源码目录

相关文章

spark ArrayWrappers 源码

spark InMemoryStore 源码

spark KVIndex 源码

spark KVStore 源码

spark KVStoreIterator 源码

spark KVStoreSerializer 源码

spark KVStoreView 源码

spark KVTypeInfo 源码

spark LevelDB 源码

spark LevelDBIterator 源码

0  赞