spark ContinuousDataSourceRDD 源码

  • 2022-10-20
  • 浏览 (231)

spark ContinuousDataSourceRDD 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/continuous/ContinuousDataSourceRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.streaming.continuous

import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.connector.read.InputPartition
import org.apache.spark.sql.connector.read.streaming.ContinuousPartitionReaderFactory
import org.apache.spark.sql.execution.metric.{CustomMetrics, SQLMetric}
import org.apache.spark.sql.types.StructType
import org.apache.spark.util.NextIterator

class ContinuousDataSourceRDDPartition(
    val index: Int,
    val inputPartition: InputPartition)
  extends Partition with Serializable {

  // This is semantically a lazy val - it's initialized once the first time a call to
  // ContinuousDataSourceRDD.compute() needs to access it, so it can be shared across
  // all compute() calls for a partition. This ensures that one compute() picks up where the
  // previous one ended.
  // We don't make it actually a lazy val because it needs input which isn't available here.
  // This will only be initialized on the executors.
  private[continuous] var queueReader: ContinuousQueuedDataReader = _
}

/**
 * The bottom-most RDD of a continuous processing read task. Wraps a [[ContinuousQueuedDataReader]]
 * to read from the remote source, and polls that queue for incoming rows.
 *
 * Note that continuous processing calls compute() multiple times, and the same
 * [[ContinuousQueuedDataReader]] instance will/must be shared between each call for the same split.
 */
class ContinuousDataSourceRDD(
    sc: SparkContext,
    dataQueueSize: Int,
    epochPollIntervalMs: Long,
    private val inputPartitions: Seq[InputPartition],
    schema: StructType,
    partitionReaderFactory: ContinuousPartitionReaderFactory,
    customMetrics: Map[String, SQLMetric])
  extends RDD[InternalRow](sc, Nil) {

  override protected def getPartitions: Array[Partition] = {
    inputPartitions.zipWithIndex.map {
      case (inputPartition, index) => new ContinuousDataSourceRDDPartition(index, inputPartition)
    }.toArray
  }

  private def castPartition(split: Partition): ContinuousDataSourceRDDPartition = split match {
    case p: ContinuousDataSourceRDDPartition => p
    case _ => throw new SparkException(s"[BUG] Not a ContinuousDataSourceRDDPartition: $split")
  }

  /**
   * Initialize the shared reader for this partition if needed, then read rows from it until
   * it returns null to signal the end of the epoch.
   */
  override def compute(split: Partition, context: TaskContext): Iterator[InternalRow] = {
    // If attempt number isn't 0, this is a task retry, which we don't support.
    if (context.attemptNumber() != 0) {
      throw new ContinuousTaskRetryException()
    }

    val readerForPartition = {
      val partition = castPartition(split)
      if (partition.queueReader == null) {
        val partitionReader = partitionReaderFactory.createReader(
          partition.inputPartition)
        partition.queueReader = new ContinuousQueuedDataReader(
          partition.index, partitionReader, schema, context, dataQueueSize, epochPollIntervalMs)
      }

      partition.queueReader
    }

    val partitionReader = readerForPartition.getPartitionReader()
    new NextIterator[InternalRow] {
      private var numRow = 0L

      override def getNext(): InternalRow = {
        if (numRow % CustomMetrics.NUM_ROWS_PER_UPDATE == 0) {
          CustomMetrics.updateMetrics(partitionReader.currentMetricsValues, customMetrics)
        }
        numRow += 1
        readerForPartition.next() match {
          case null =>
            finished = true
            null
          case row => row
        }
      }

      override def close(): Unit = {}
    }
  }

  override def getPreferredLocations(split: Partition): Seq[String] = {
    castPartition(split).inputPartition.preferredLocations()
  }
}

相关信息

spark 源码目录

相关文章

spark ContinuousExecution 源码

spark ContinuousQueuedDataReader 源码

spark ContinuousRateStreamSource 源码

spark ContinuousTaskRetryException 源码

spark ContinuousTextSocketSource 源码

spark ContinuousWriteRDD 源码

spark EpochCoordinator 源码

spark EpochTracker 源码

spark WriteToContinuousDataSource 源码

spark WriteToContinuousDataSourceExec 源码

0  赞