spark limit 源码
spark limit 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/limit.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import org.apache.spark.rdd.{ParallelCollectionRDD, RDD}
import org.apache.spark.serializer.Serializer
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, CodeGenerator, ExprCode, LazilyGeneratedOrdering}
import org.apache.spark.sql.catalyst.plans.physical._
import org.apache.spark.sql.catalyst.util.truncatedString
import org.apache.spark.sql.execution.exchange.ShuffleExchangeExec
import org.apache.spark.sql.execution.metric.{SQLShuffleReadMetricsReporter, SQLShuffleWriteMetricsReporter}
import org.apache.spark.util.collection.Utils
/**
* The operator takes limited number of elements from its child operator.
*/
trait LimitExec extends UnaryExecNode {
/** Number of element should be taken from child operator */
def limit: Int
}
/**
* Take the first `limit` elements, collect them to a single partition and then to drop the
* first `offset` elements.
*
* This operator will be used when a logical `Limit` and/or `Offset` operation is the final operator
* in an logical plan, which happens when the user is collecting results back to the driver.
*/
case class CollectLimitExec(limit: Int = -1, child: SparkPlan, offset: Int = 0) extends LimitExec {
assert(limit >= 0 || (limit == -1 && offset > 0))
override def output: Seq[Attribute] = child.output
override def outputPartitioning: Partitioning = SinglePartition
override def executeCollect(): Array[InternalRow] = {
// Because CollectLimitExec collect all the output of child to a single partition, so we need
// collect the first `limit` + `offset` elements and then to drop the first `offset` elements.
// For example: limit is 1 and offset is 2 and the child output two partition.
// The first partition output [1, 2] and the Second partition output [3, 4, 5].
// Then [1, 2, 3] will be taken and output [3].
if (limit >= 0) {
if (offset > 0) {
child.executeTake(limit).drop(offset)
} else {
child.executeTake(limit)
}
} else {
child.executeCollect().drop(offset)
}
}
private val serializer: Serializer = new UnsafeRowSerializer(child.output.size)
private lazy val writeMetrics =
SQLShuffleWriteMetricsReporter.createShuffleWriteMetrics(sparkContext)
private lazy val readMetrics =
SQLShuffleReadMetricsReporter.createShuffleReadMetrics(sparkContext)
override lazy val metrics = readMetrics ++ writeMetrics
protected override def doExecute(): RDD[InternalRow] = {
val childRDD = child.execute()
if (childRDD.getNumPartitions == 0) {
new ParallelCollectionRDD(sparkContext, Seq.empty[InternalRow], 1, Map.empty)
} else {
val singlePartitionRDD = if (childRDD.getNumPartitions == 1) {
childRDD
} else {
val locallyLimited = if (limit >= 0) {
childRDD.mapPartitionsInternal(_.take(limit))
} else {
childRDD
}
new ShuffledRowRDD(
ShuffleExchangeExec.prepareShuffleDependency(
locallyLimited,
child.output,
SinglePartition,
serializer,
writeMetrics),
readMetrics)
}
if (limit >= 0) {
if (offset > 0) {
singlePartitionRDD.mapPartitionsInternal(_.slice(offset, limit))
} else {
singlePartitionRDD.mapPartitionsInternal(_.take(limit))
}
} else {
singlePartitionRDD.mapPartitionsInternal(_.drop(offset))
}
}
}
override def stringArgs: Iterator[Any] = {
super.stringArgs.zipWithIndex.filter {
case (0, 2) => false
case _ => true
}.map(_._1)
}
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
/**
* Take the last `limit` elements and collect them to a single partition.
*
* This operator will be used when a logical `Tail` operation is the final operator in an
* logical plan, which happens when the user is collecting results back to the driver.
*/
case class CollectTailExec(limit: Int, child: SparkPlan) extends LimitExec {
override def output: Seq[Attribute] = child.output
override def outputPartitioning: Partitioning = SinglePartition
override def executeCollect(): Array[InternalRow] = child.executeTail(limit)
protected override def doExecute(): RDD[InternalRow] = {
// This is a bit hacky way to avoid a shuffle and scanning all data when it performs
// at `Dataset.tail`.
// Since this execution plan and `execute` are currently called only when
// `Dataset.tail` is invoked, the jobs are always executed when they are supposed to be.
// If we use this execution plan separately like `Dataset.limit` without an actual
// job launch, we might just have to mimic the implementation of `CollectLimitExec`.
sparkContext.parallelize(executeCollect(), numSlices = 1)
}
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
object BaseLimitExec {
private val curId = new java.util.concurrent.atomic.AtomicInteger()
def newLimitCountTerm(): String = {
val id = curId.getAndIncrement()
s"_limit_counter_$id"
}
}
/**
* Helper trait which defines methods that are shared by both
* [[LocalLimitExec]] and [[GlobalLimitExec]].
*/
trait BaseLimitExec extends LimitExec with CodegenSupport {
override def output: Seq[Attribute] = child.output
override def outputPartitioning: Partitioning = child.outputPartitioning
override def outputOrdering: Seq[SortOrder] = child.outputOrdering
protected override def doExecute(): RDD[InternalRow] = child.execute().mapPartitionsInternal {
iter => iter.take(limit)
}
override def inputRDDs(): Seq[RDD[InternalRow]] = {
child.asInstanceOf[CodegenSupport].inputRDDs()
}
// Mark this as empty. This plan doesn't need to evaluate any inputs and can defer the evaluation
// to the parent operator.
override def usedInputs: AttributeSet = AttributeSet.empty
protected lazy val countTerm = BaseLimitExec.newLimitCountTerm()
override lazy val limitNotReachedChecks: Seq[String] = if (limit >= 0) {
s"$countTerm < $limit" +: super.limitNotReachedChecks
} else {
super.limitNotReachedChecks
}
protected override def doProduce(ctx: CodegenContext): String = {
// The counter name is already obtained by the upstream operators via `limitNotReachedChecks`.
// Here we have to inline it to not change its name. This is fine as we won't have many limit
// operators in one query.
//
// Note: create counter variable here instead of `doConsume()` to avoid compilation error,
// because upstream operators might not call `doConsume()` here
// (e.g. `HashJoin.codegenInner()`).
ctx.addMutableState(CodeGenerator.JAVA_INT, countTerm, forceInline = true, useFreshName = false)
child.asInstanceOf[CodegenSupport].produce(ctx, this)
}
override def doConsume(ctx: CodegenContext, input: Seq[ExprCode], row: ExprCode): String = {
s"""
| if ($countTerm < $limit) {
| $countTerm += 1;
| ${consume(ctx, input)}
| }
""".stripMargin
}
}
/**
* Take the first `limit` elements of each child partition, but do not collect or shuffle them.
*/
case class LocalLimitExec(limit: Int, child: SparkPlan) extends BaseLimitExec {
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
/**
* Take the first `limit` elements and then drop the first `offset` elements in the child's single
* output partition.
*/
case class GlobalLimitExec(limit: Int = -1, child: SparkPlan, offset: Int = 0)
extends BaseLimitExec {
assert(limit >= 0 || (limit == -1 && offset > 0))
override def requiredChildDistribution: List[Distribution] = AllTuples :: Nil
override def doExecute(): RDD[InternalRow] = {
if (offset > 0) {
if (limit >= 0) {
child.execute().mapPartitionsInternal(iter => iter.slice(offset, limit))
} else {
child.execute().mapPartitionsInternal(iter => iter.drop(offset))
}
} else {
super.doExecute()
}
}
override def doConsume(ctx: CodegenContext, input: Seq[ExprCode], row: ExprCode): String = {
if (offset > 0) {
val skipTerm = ctx.addMutableState(CodeGenerator.JAVA_INT, "rowsSkipped", forceInline = true)
if (limit > 0) {
// In codegen, we skip the first `offset` rows, then take the first `limit - offset` rows.
val finalLimit = limit - offset
s"""
| if ($skipTerm < $offset) {
| $skipTerm += 1;
| } else if ($countTerm < $finalLimit) {
| $countTerm += 1;
| ${consume(ctx, input)}
| }
""".stripMargin
} else {
s"""
| if ($skipTerm < $offset) {
| $skipTerm += 1;
| } else {
| ${consume(ctx, input)}
| }
""".stripMargin
}
} else {
super.doConsume(ctx, input, row)
}
}
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
/**
* Take the first `limit` elements as defined by the sortOrder, then drop the first `offset`
* elements, and do projection if needed. This is logically equivalent to having a Limit and/or
* Offset operator after a [[SortExec]] operator, or having a [[ProjectExec]] operator between them.
* This could have been named TopK, but Spark's top operator does the opposite in ordering
* so we name it TakeOrdered to avoid confusion.
*/
case class TakeOrderedAndProjectExec(
limit: Int,
sortOrder: Seq[SortOrder],
projectList: Seq[NamedExpression],
child: SparkPlan,
offset: Int = 0) extends AliasAwareOutputOrdering {
override def output: Seq[Attribute] = {
projectList.map(_.toAttribute)
}
override def executeCollect(): Array[InternalRow] = {
val orderingSatisfies = SortOrder.orderingSatisfies(child.outputOrdering, sortOrder)
val ord = new LazilyGeneratedOrdering(sortOrder, child.output)
val limited = if (orderingSatisfies) {
child.execute().mapPartitionsInternal(_.map(_.copy()).take(limit)).takeOrdered(limit)(ord)
} else {
child.execute().mapPartitionsInternal(_.map(_.copy())).takeOrdered(limit)(ord)
}
val data = if (offset > 0) limited.drop(offset) else limited
if (projectList != child.output) {
val proj = UnsafeProjection.create(projectList, child.output)
data.map(r => proj(r).copy())
} else {
data
}
}
private val serializer: Serializer = new UnsafeRowSerializer(child.output.size)
private lazy val writeMetrics =
SQLShuffleWriteMetricsReporter.createShuffleWriteMetrics(sparkContext)
private lazy val readMetrics =
SQLShuffleReadMetricsReporter.createShuffleReadMetrics(sparkContext)
override lazy val metrics = readMetrics ++ writeMetrics
protected override def doExecute(): RDD[InternalRow] = {
val orderingSatisfies = SortOrder.orderingSatisfies(child.outputOrdering, sortOrder)
val ord = new LazilyGeneratedOrdering(sortOrder, child.output)
val childRDD = child.execute()
if (childRDD.getNumPartitions == 0) {
new ParallelCollectionRDD(sparkContext, Seq.empty[InternalRow], 1, Map.empty)
} else {
val singlePartitionRDD = if (childRDD.getNumPartitions == 1) {
childRDD
} else {
val localTopK = if (orderingSatisfies) {
childRDD.mapPartitionsInternal(_.map(_.copy()).take(limit))
} else {
childRDD.mapPartitionsInternal { iter =>
Utils.takeOrdered(iter.map(_.copy()), limit)(ord)
}
}
new ShuffledRowRDD(
ShuffleExchangeExec.prepareShuffleDependency(
localTopK,
child.output,
SinglePartition,
serializer,
writeMetrics),
readMetrics)
}
singlePartitionRDD.mapPartitionsInternal { iter =>
val limited = Utils.takeOrdered(iter.map(_.copy()), limit)(ord)
val topK = if (offset > 0) limited.drop(offset) else limited
if (projectList != child.output) {
val proj = UnsafeProjection.create(projectList, child.output)
topK.map(r => proj(r))
} else {
topK
}
}
}
}
override protected def outputExpressions: Seq[NamedExpression] = projectList
override protected def orderingExpressions: Seq[SortOrder] = sortOrder
override def outputPartitioning: Partitioning = SinglePartition
override def simpleString(maxFields: Int): String = {
val orderByString = truncatedString(sortOrder, "[", ",", "]", maxFields)
val outputString = truncatedString(output, "[", ",", "]", maxFields)
s"TakeOrderedAndProject(limit=$limit, orderBy=$orderByString, output=$outputString)"
}
override def stringArgs: Iterator[Any] = {
super.stringArgs.zipWithIndex.filter {
case (0, 4) => false
case _ => true
}.map(_._1)
}
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
相关信息
相关文章
spark AggregatingAccumulator 源码
spark AliasAwareOutputExpression 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦