spark EvalPythonExec 源码

  • 2022-10-20
  • 浏览 (252)

spark EvalPythonExec 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/python/EvalPythonExec.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.python

import java.io.File

import scala.collection.mutable.ArrayBuffer

import org.apache.spark.{ContextAwareIterator, SparkEnv, TaskContext}
import org.apache.spark.api.python.ChainedPythonFunctions
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.execution.UnaryExecNode
import org.apache.spark.sql.types.{DataType, StructField, StructType}
import org.apache.spark.util.Utils


/**
 * A physical plan that evaluates a [[PythonUDF]], one partition of tuples at a time.
 *
 * Python evaluation works by sending the necessary (projected) input data via a socket to an
 * external Python process, and combine the result from the Python process with the original row.
 *
 * For each row we send to Python, we also put it in a queue first. For each output row from Python,
 * we drain the queue to find the original input row. Note that if the Python process is way too
 * slow, this could lead to the queue growing unbounded and spill into disk when run out of memory.
 *
 * Here is a diagram to show how this works:
 *
 *            Downstream (for parent)
 *             /      \
 *            /     socket  (output of UDF)
 *           /         \
 *        RowQueue    Python
 *           \         /
 *            \     socket  (input of UDF)
 *             \     /
 *          upstream (from child)
 *
 * The rows sent to and received from Python are packed into batches (100 rows) and serialized,
 * there should be always some rows buffered in the socket or Python process, so the pulling from
 * RowQueue ALWAYS happened after pushing into it.
 */
trait EvalPythonExec extends UnaryExecNode {
  def udfs: Seq[PythonUDF]
  def resultAttrs: Seq[Attribute]

  override def output: Seq[Attribute] = child.output ++ resultAttrs

  override def producedAttributes: AttributeSet = AttributeSet(resultAttrs)

  private def collectFunctions(udf: PythonUDF): (ChainedPythonFunctions, Seq[Expression]) = {
    udf.children match {
      case Seq(u: PythonUDF) =>
        val (chained, children) = collectFunctions(u)
        (ChainedPythonFunctions(chained.funcs ++ Seq(udf.func)), children)
      case children =>
        // There should not be any other UDFs, or the children can't be evaluated directly.
        assert(children.forall(!_.exists(_.isInstanceOf[PythonUDF])))
        (ChainedPythonFunctions(Seq(udf.func)), udf.children)
    }
  }

  protected def evaluate(
      funcs: Seq[ChainedPythonFunctions],
      argOffsets: Array[Array[Int]],
      iter: Iterator[InternalRow],
      schema: StructType,
      context: TaskContext): Iterator[InternalRow]

  protected override def doExecute(): RDD[InternalRow] = {
    val inputRDD = child.execute().map(_.copy())

    inputRDD.mapPartitions { iter =>
      val context = TaskContext.get()
      val contextAwareIterator = new ContextAwareIterator(context, iter)

      // The queue used to buffer input rows so we can drain it to
      // combine input with output from Python.
      val queue = HybridRowQueue(context.taskMemoryManager(),
        new File(Utils.getLocalDir(SparkEnv.get.conf)), child.output.length)
      context.addTaskCompletionListener[Unit] { ctx =>
        queue.close()
      }

      val (pyFuncs, inputs) = udfs.map(collectFunctions).unzip

      // flatten all the arguments
      val allInputs = new ArrayBuffer[Expression]
      val dataTypes = new ArrayBuffer[DataType]
      val argOffsets = inputs.map { input =>
        input.map { e =>
          if (allInputs.exists(_.semanticEquals(e))) {
            allInputs.indexWhere(_.semanticEquals(e))
          } else {
            allInputs += e
            dataTypes += e.dataType
            allInputs.length - 1
          }
        }.toArray
      }.toArray
      val projection = MutableProjection.create(allInputs.toSeq, child.output)
      projection.initialize(context.partitionId())
      val schema = StructType(dataTypes.zipWithIndex.map { case (dt, i) =>
        StructField(s"_$i", dt)
      }.toSeq)

      // Add rows to queue to join later with the result.
      val projectedRowIter = contextAwareIterator.map { inputRow =>
        queue.add(inputRow.asInstanceOf[UnsafeRow])
        projection(inputRow)
      }

      val outputRowIterator = evaluate(
        pyFuncs, argOffsets, projectedRowIter, schema, context)

      val joined = new JoinedRow
      val resultProj = UnsafeProjection.create(output, output)

      outputRowIterator.map { outputRow =>
        resultProj(joined(queue.remove(), outputRow))
      }
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AggregateInPandasExec 源码

spark ApplyInPandasWithStatePythonRunner 源码

spark ApplyInPandasWithStateWriter 源码

spark ArrowEvalPythonExec 源码

spark ArrowPythonRunner 源码

spark AttachDistributedSequenceExec 源码

spark BatchEvalPythonExec 源码

spark CoGroupedArrowPythonRunner 源码

spark EvaluatePython 源码

spark ExtractPythonUDFs 源码

0  赞