spark LibSVMRelation 源码
spark LibSVMRelation 代码
文件路径:/mllib/src/main/scala/org/apache/spark/ml/source/libsvm/LibSVMRelation.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.source.libsvm
import java.io.IOException
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileStatus, Path}
import org.apache.hadoop.mapreduce.{Job, TaskAttemptContext}
import org.apache.spark.TaskContext
import org.apache.spark.internal.Logging
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.{Vectors, VectorUDT}
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.catalyst.expressions.AttributeReference
import org.apache.spark.sql.catalyst.expressions.codegen.GenerateUnsafeProjection
import org.apache.spark.sql.execution.datasources._
import org.apache.spark.sql.sources._
import org.apache.spark.sql.types._
import org.apache.spark.util.SerializableConfiguration
private[libsvm] class LibSVMOutputWriter(
val path: String,
dataSchema: StructType,
context: TaskAttemptContext)
extends OutputWriter {
private val writer = CodecStreams.createOutputStreamWriter(context, new Path(path))
// This `asInstanceOf` is safe because it's guaranteed by `LibSVMFileFormat.verifySchema`
private val udt = dataSchema(1).dataType.asInstanceOf[VectorUDT]
override def write(row: InternalRow): Unit = {
val label = row.getDouble(0)
val vector = udt.deserialize(row.getStruct(1, udt.sqlType.length))
writer.write(label.toString)
vector.foreachActive { case (i, v) =>
writer.write(s" ${i + 1}:$v")
}
writer.write('\n')
}
override def close(): Unit = {
writer.close()
}
}
/** @see [[LibSVMDataSource]] for public documentation. */
// If this is moved or renamed, please update DataSource's backwardCompatibilityMap.
private[libsvm] class LibSVMFileFormat
extends TextBasedFileFormat
with DataSourceRegister
with Logging {
override def shortName(): String = "libsvm"
override def toString: String = "LibSVM"
private def verifySchema(dataSchema: StructType, forWriting: Boolean): Unit = {
if (
dataSchema.size != 2 ||
!dataSchema(0).dataType.sameType(DataTypes.DoubleType) ||
!dataSchema(1).dataType.sameType(new VectorUDT()) ||
!(forWriting || dataSchema(1).metadata.getLong(LibSVMOptions.NUM_FEATURES).toInt > 0)
) {
throw new IOException(s"Illegal schema for libsvm data, schema=$dataSchema")
}
}
override def inferSchema(
sparkSession: SparkSession,
options: Map[String, String],
files: Seq[FileStatus]): Option[StructType] = {
val libSVMOptions = new LibSVMOptions(options)
val numFeatures: Int = libSVMOptions.numFeatures.getOrElse {
require(files.nonEmpty, "No input path specified for libsvm data")
logWarning(
"'numFeatures' option not specified, determining the number of features by going " +
"though the input. If you know the number in advance, please specify it via " +
"'numFeatures' option to avoid the extra scan.")
val paths = files.map(_.getPath.toString)
val parsed = MLUtils.parseLibSVMFile(sparkSession, paths, options)
MLUtils.computeNumFeatures(parsed)
}
val labelField = StructField("label", DoubleType, nullable = false)
val extraMetadata = new MetadataBuilder()
.putLong(LibSVMOptions.NUM_FEATURES, numFeatures)
.build()
val attrGroup = new AttributeGroup(name = "features", numAttributes = numFeatures)
val featuresField = attrGroup.toStructField(extraMetadata)
Some(StructType(labelField :: featuresField :: Nil))
}
override def prepareWrite(
sparkSession: SparkSession,
job: Job,
options: Map[String, String],
dataSchema: StructType): OutputWriterFactory = {
verifySchema(dataSchema, true)
new OutputWriterFactory {
override def newInstance(
path: String,
dataSchema: StructType,
context: TaskAttemptContext): OutputWriter = {
new LibSVMOutputWriter(path, dataSchema, context)
}
override def getFileExtension(context: TaskAttemptContext): String = {
".libsvm" + CodecStreams.getCompressionExtension(context)
}
}
}
override def buildReader(
sparkSession: SparkSession,
dataSchema: StructType,
partitionSchema: StructType,
requiredSchema: StructType,
filters: Seq[Filter],
options: Map[String, String],
hadoopConf: Configuration): (PartitionedFile) => Iterator[InternalRow] = {
verifySchema(dataSchema, false)
val numFeatures = dataSchema("features").metadata.getLong(LibSVMOptions.NUM_FEATURES).toInt
assert(numFeatures > 0)
val libSVMOptions = new LibSVMOptions(options)
val isSparse = libSVMOptions.isSparse
val broadcastedHadoopConf =
sparkSession.sparkContext.broadcast(new SerializableConfiguration(hadoopConf))
(file: PartitionedFile) => {
val linesReader = new HadoopFileLinesReader(file, broadcastedHadoopConf.value.value)
Option(TaskContext.get()).foreach(_.addTaskCompletionListener[Unit](_ => linesReader.close()))
val points = linesReader
.map(_.toString.trim)
.filterNot(line => line.isEmpty || line.startsWith("#"))
.map { line =>
val (label, indices, values) = MLUtils.parseLibSVMRecord(line)
LabeledPoint(label, Vectors.sparse(numFeatures, indices, values))
}
val toRow = RowEncoder(dataSchema).createSerializer()
val fullOutput = dataSchema.map { f =>
AttributeReference(f.name, f.dataType, f.nullable, f.metadata)()
}
val requiredOutput = fullOutput.filter { a =>
requiredSchema.fieldNames.contains(a.name)
}
val requiredColumns = GenerateUnsafeProjection.generate(requiredOutput, fullOutput)
points.map { pt =>
val features = if (isSparse) pt.features.toSparse else pt.features.toDense
requiredColumns(toRow(Row(pt.label, features)))
}
}
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦