spark KubernetesExecutorBackend 源码
spark KubernetesExecutorBackend 代码
文件路径:/resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/KubernetesExecutorBackend.scala
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.scheduler.cluster.k8s
import org.apache.spark._
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.deploy.worker.WorkerWatcher
import org.apache.spark.executor.CoarseGrainedExecutorBackend
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config._
import org.apache.spark.resource.ResourceProfile
import org.apache.spark.resource.ResourceProfile.DEFAULT_RESOURCE_PROFILE_ID
import org.apache.spark.rpc._
import org.apache.spark.scheduler.cluster.CoarseGrainedClusterMessages._
import org.apache.spark.util.Utils
private[spark] object KubernetesExecutorBackend extends Logging {
  // Message used internally to start the executor when the driver successfully accepted the
  // registration request.
  case object RegisteredExecutor
  case class Arguments(
      driverUrl: String,
      executorId: String,
      bindAddress: String,
      hostname: String,
      cores: Int,
      appId: String,
      workerUrl: Option[String],
      resourcesFileOpt: Option[String],
      resourceProfileId: Int,
      podName: String)
  def main(args: Array[String]): Unit = {
    val createFn: (RpcEnv, Arguments, SparkEnv, ResourceProfile, String) =>
      CoarseGrainedExecutorBackend = { case (rpcEnv, arguments, env, resourceProfile, execId) =>
        new CoarseGrainedExecutorBackend(rpcEnv, arguments.driverUrl, execId,
        arguments.bindAddress, arguments.hostname, arguments.cores,
        env, arguments.resourcesFileOpt, resourceProfile)
    }
    run(parseArguments(args, this.getClass.getCanonicalName.stripSuffix("$")), createFn)
    System.exit(0)
  }
  def run(
      arguments: Arguments,
      backendCreateFn: (RpcEnv, Arguments, SparkEnv, ResourceProfile, String) =>
        CoarseGrainedExecutorBackend): Unit = {
    Utils.initDaemon(log)
    SparkHadoopUtil.get.runAsSparkUser { () =>
      // Debug code
      assert(arguments.hostname != null &&
          (arguments.hostname.indexOf(':') == -1 || arguments.hostname.split(":").length > 2))
      // Bootstrap to fetch the driver's Spark properties.
      val executorConf = new SparkConf
      val fetcher = RpcEnv.create(
        "driverPropsFetcher",
        arguments.bindAddress,
        arguments.hostname,
        -1,
        executorConf,
        new SecurityManager(executorConf),
        numUsableCores = 0,
        clientMode = true)
      var driver: RpcEndpointRef = null
      val nTries = 3
      for (i <- 0 until nTries if driver == null) {
        try {
          driver = fetcher.setupEndpointRefByURI(arguments.driverUrl)
        } catch {
          case e: Throwable => if (i == nTries - 1) {
            throw e
          }
        }
      }
      val cfg = driver.askSync[SparkAppConfig](RetrieveSparkAppConfig(arguments.resourceProfileId))
      val props = cfg.sparkProperties ++ Seq[(String, String)](("spark.app.id", arguments.appId))
      val execId: String = arguments.executorId match {
        case null | "EXECID" | "" =>
          // We need to resolve the exec id dynamically
          driver.askSync[String](GenerateExecID(arguments.podName))
        case id =>
          id
      }
      fetcher.shutdown()
      // Create SparkEnv using properties we fetched from the driver.
      val driverConf = new SparkConf()
      for ((key, value) <- props) {
        // this is required for SSL in standalone mode
        if (SparkConf.isExecutorStartupConf(key)) {
          driverConf.setIfMissing(key, value)
        } else {
          driverConf.set(key, value)
        }
      }
      cfg.hadoopDelegationCreds.foreach { tokens =>
        SparkHadoopUtil.get.addDelegationTokens(tokens, driverConf)
      }
      driverConf.set(EXECUTOR_ID, execId)
      val env = SparkEnv.createExecutorEnv(driverConf, execId, arguments.bindAddress,
        arguments.hostname, arguments.cores, cfg.ioEncryptionKey, isLocal = false)
      val backend = backendCreateFn(env.rpcEnv, arguments, env, cfg.resourceProfile, execId)
      env.rpcEnv.setupEndpoint("Executor", backend)
      arguments.workerUrl.foreach { url =>
        env.rpcEnv.setupEndpoint("WorkerWatcher",
          new WorkerWatcher(env.rpcEnv, url, isChildProcessStopping = backend.stopping))
      }
      env.rpcEnv.awaitTermination()
    }
  }
  def parseArguments(args: Array[String], classNameForEntry: String): Arguments = {
    var driverUrl: String = null
    var executorId: String = null
    var bindAddress: String = null
    var hostname: String = null
    var cores: Int = 0
    var resourcesFileOpt: Option[String] = None
    var appId: String = null
    var workerUrl: Option[String] = None
    var resourceProfileId: Int = DEFAULT_RESOURCE_PROFILE_ID
    var podName: String = null
    var argv = args.toList
    while (!argv.isEmpty) {
      argv match {
        case ("--driver-url") :: value :: tail =>
          driverUrl = value
          argv = tail
        case ("--executor-id") :: value :: tail =>
          executorId = value
          argv = tail
        case ("--bind-address") :: value :: tail =>
          bindAddress = value
          argv = tail
        case ("--hostname") :: value :: tail =>
          // entrypoint.sh sets SPARK_EXECUTOR_POD_IP without '[]'
          hostname = Utils.addBracketsIfNeeded(value)
          argv = tail
        case ("--cores") :: value :: tail =>
          cores = value.toInt
          argv = tail
        case ("--resourcesFile") :: value :: tail =>
          resourcesFileOpt = Some(value)
          argv = tail
        case ("--app-id") :: value :: tail =>
          appId = value
          argv = tail
        case ("--worker-url") :: value :: tail =>
          // Worker url is used in spark standalone mode to enforce fate-sharing with worker
          workerUrl = Some(value)
          argv = tail
        case ("--resourceProfileId") :: value :: tail =>
          resourceProfileId = value.toInt
          argv = tail
        case ("--podName") :: value :: tail =>
          podName = value
          argv = tail
        case Nil =>
        case tail =>
          // scalastyle:off println
          System.err.println(s"Unrecognized options: ${tail.mkString(" ")}")
          // scalastyle:on println
          printUsageAndExit(classNameForEntry)
      }
    }
    if (hostname == null) {
      hostname = Utils.localHostName()
      log.info(s"Executor hostname is not provided, will use '$hostname' to advertise itself")
    }
    if (driverUrl == null || executorId == null || cores <= 0 || appId == null) {
      printUsageAndExit(classNameForEntry)
    }
    if (bindAddress == null) {
      bindAddress = hostname
    }
    Arguments(driverUrl, executorId, bindAddress, hostname, cores, appId, workerUrl,
      resourcesFileOpt, resourceProfileId, podName)
  }
  private def printUsageAndExit(classNameForEntry: String): Unit = {
    // scalastyle:off println
    System.err.println(
      s"""
      |Usage: $classNameForEntry [options]
      |
      | Options are:
      |   --driver-url <driverUrl>
      |   --executor-id <executorId>
      |   --bind-address <bindAddress>
      |   --hostname <hostname>
      |   --cores <cores>
      |   --resourcesFile <fileWithJSONResourceInformation>
      |   --app-id <appid>
      |   --worker-url <workerUrl>
      |   --resourceProfileId <id>
      |   --podName <podName>
      |""".stripMargin)
    // scalastyle:on println
    System.exit(1)
  }
}
相关信息
相关文章
spark AbstractPodsAllocator 源码
spark ExecutorPodsAllocator 源码
spark ExecutorPodsLifecycleManager 源码
spark ExecutorPodsPollingSnapshotSource 源码
spark ExecutorPodsSnapshotsStore 源码
spark ExecutorPodsSnapshotsStoreImpl 源码
                        
                            0
                        
                        
                             赞
                        
                    
                    
                - 所属分类: 前端技术
 - 本文标签:
 
热门推荐
- 
                        2、 - 优质文章
 - 
                        3、 gate.io
 - 
                        7、 openharmony
 - 
                        9、 golang