spark GraphLoader 源码

  • 2022-10-20
  • 浏览 (244)

spark GraphLoader 代码

文件路径:/graphx/src/main/scala/org/apache/spark/graphx/GraphLoader.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.graphx

import java.util.concurrent.TimeUnit

import org.apache.spark.SparkContext
import org.apache.spark.graphx.impl.{EdgePartitionBuilder, GraphImpl}
import org.apache.spark.internal.Logging
import org.apache.spark.storage.StorageLevel

/**
 * Provides utilities for loading [[Graph]]s from files.
 */
object GraphLoader extends Logging {

  /**
   * Loads a graph from an edge list formatted file where each line contains two integers: a source
   * id and a target id. Skips lines that begin with `#`.
   *
   * If desired the edges can be automatically oriented in the positive
   * direction (source Id is less than target Id) by setting `canonicalOrientation` to
   * true.
   *
   * @example Loads a file in the following format:
   * {{{
   * # Comment Line
   * # Source Id <\t> Target Id
   * 1   -5
   * 1    2
   * 2    7
   * 1    8
   * }}}
   *
   * @param sc SparkContext
   * @param path the path to the file (e.g., /home/data/file or hdfs://file)
   * @param canonicalOrientation whether to orient edges in the positive
   *        direction
   * @param numEdgePartitions the number of partitions for the edge RDD
   * Setting this value to -1 will use the default parallelism.
   * @param edgeStorageLevel the desired storage level for the edge partitions
   * @param vertexStorageLevel the desired storage level for the vertex partitions
   */
  def edgeListFile(
      sc: SparkContext,
      path: String,
      canonicalOrientation: Boolean = false,
      numEdgePartitions: Int = -1,
      edgeStorageLevel: StorageLevel = StorageLevel.MEMORY_ONLY,
      vertexStorageLevel: StorageLevel = StorageLevel.MEMORY_ONLY)
    : Graph[Int, Int] =
  {
    val startTimeNs = System.nanoTime()

    // Parse the edge data table directly into edge partitions
    val lines =
      if (numEdgePartitions > 0) {
        sc.textFile(path, numEdgePartitions).coalesce(numEdgePartitions)
      } else {
        sc.textFile(path)
      }
    val edges = lines.mapPartitionsWithIndex { (pid, iter) =>
      val builder = new EdgePartitionBuilder[Int, Int]
      iter.foreach { line =>
        if (!line.isEmpty && line(0) != '#') {
          val lineArray = line.split("\\s+")
          if (lineArray.length < 2) {
            throw new IllegalArgumentException("Invalid line: " + line)
          }
          val srcId = lineArray(0).toLong
          val dstId = lineArray(1).toLong
          if (canonicalOrientation && srcId > dstId) {
            builder.add(dstId, srcId, 1)
          } else {
            builder.add(srcId, dstId, 1)
          }
        }
      }
      Iterator((pid, builder.toEdgePartition))
    }.persist(edgeStorageLevel).setName("GraphLoader.edgeListFile - edges (%s)".format(path))
    edges.count()

    logInfo(s"It took ${TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - startTimeNs)} ms" +
      " to load the edges")

    GraphImpl.fromEdgePartitions(edges, defaultVertexAttr = 1, edgeStorageLevel = edgeStorageLevel,
      vertexStorageLevel = vertexStorageLevel)
  } // end of edgeListFile

}

相关信息

spark 源码目录

相关文章

spark Edge 源码

spark EdgeContext 源码

spark EdgeDirection 源码

spark EdgeRDD 源码

spark EdgeTriplet 源码

spark Graph 源码

spark GraphOps 源码

spark GraphXUtils 源码

spark PartitionStrategy 源码

spark Pregel 源码

0  赞