spark CatalystTypeConverters 源码
spark CatalystTypeConverters 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/CatalystTypeConverters.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst
import java.lang.{Iterable => JavaIterable}
import java.math.{BigDecimal => JavaBigDecimal}
import java.math.{BigInteger => JavaBigInteger}
import java.sql.{Date, Timestamp}
import java.time.{Duration, Instant, LocalDate, LocalDateTime, Period}
import java.util.{Map => JavaMap}
import javax.annotation.Nullable
import scala.language.existentials
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._
import org.apache.spark.sql.types.DayTimeIntervalType._
import org.apache.spark.sql.types.YearMonthIntervalType._
import org.apache.spark.unsafe.types.UTF8String
import org.apache.spark.util.collection.Utils
/**
* Functions to convert Scala types to Catalyst types and vice versa.
*/
object CatalystTypeConverters {
// The Predef.Map is scala.collection.immutable.Map.
// Since the map values can be mutable, we explicitly import scala.collection.Map at here.
import scala.collection.Map
private[sql] def isPrimitive(dataType: DataType): Boolean = {
dataType match {
case BooleanType => true
case ByteType => true
case ShortType => true
case IntegerType => true
case LongType => true
case FloatType => true
case DoubleType => true
case _ => false
}
}
private def getConverterForType(dataType: DataType): CatalystTypeConverter[Any, Any, Any] = {
val converter = dataType match {
case udt: UserDefinedType[_] => UDTConverter(udt)
case arrayType: ArrayType => ArrayConverter(arrayType.elementType)
case mapType: MapType => MapConverter(mapType.keyType, mapType.valueType)
case structType: StructType => StructConverter(structType)
case StringType => StringConverter
case DateType if SQLConf.get.datetimeJava8ApiEnabled => LocalDateConverter
case DateType => DateConverter
case TimestampType if SQLConf.get.datetimeJava8ApiEnabled => InstantConverter
case TimestampType => TimestampConverter
case TimestampNTZType => TimestampNTZConverter
case dt: DecimalType => new DecimalConverter(dt)
case BooleanType => BooleanConverter
case ByteType => ByteConverter
case ShortType => ShortConverter
case IntegerType => IntConverter
case LongType => LongConverter
case FloatType => FloatConverter
case DoubleType => DoubleConverter
case DayTimeIntervalType(_, endField) => DurationConverter(endField)
case YearMonthIntervalType(_, endField) => PeriodConverter(endField)
case dataType: DataType => IdentityConverter(dataType)
}
converter.asInstanceOf[CatalystTypeConverter[Any, Any, Any]]
}
/**
* Converts a Scala type to its Catalyst equivalent (and vice versa).
*
* @tparam ScalaInputType The type of Scala values that can be converted to Catalyst.
* @tparam ScalaOutputType The type of Scala values returned when converting Catalyst to Scala.
* @tparam CatalystType The internal Catalyst type used to represent values of this Scala type.
*/
private abstract class CatalystTypeConverter[ScalaInputType, ScalaOutputType, CatalystType]
extends Serializable {
/**
* Converts a Scala type to its Catalyst equivalent while automatically handling nulls
* and Options.
*/
final def toCatalyst(@Nullable maybeScalaValue: Any): CatalystType = {
maybeScalaValue match {
case null | None => null.asInstanceOf[CatalystType]
case opt: Some[ScalaInputType] => toCatalystImpl(opt.get)
case other => toCatalystImpl(other.asInstanceOf[ScalaInputType])
}
}
/**
* Given a Catalyst row, convert the value at column `column` to its Scala equivalent.
*/
final def toScala(row: InternalRow, column: Int): ScalaOutputType = {
if (row.isNullAt(column)) null.asInstanceOf[ScalaOutputType] else toScalaImpl(row, column)
}
/**
* Convert a Catalyst value to its Scala equivalent.
*/
def toScala(@Nullable catalystValue: CatalystType): ScalaOutputType
/**
* Converts a Scala value to its Catalyst equivalent.
* @param scalaValue the Scala value, guaranteed not to be null.
* @return the Catalyst value.
*/
protected def toCatalystImpl(scalaValue: ScalaInputType): CatalystType
/**
* Given a Catalyst row, convert the value at column `column` to its Scala equivalent.
* This method will only be called on non-null columns.
*/
protected def toScalaImpl(row: InternalRow, column: Int): ScalaOutputType
}
private case class IdentityConverter(dataType: DataType)
extends CatalystTypeConverter[Any, Any, Any] {
override def toCatalystImpl(scalaValue: Any): Any = scalaValue
override def toScala(catalystValue: Any): Any = catalystValue
override def toScalaImpl(row: InternalRow, column: Int): Any = row.get(column, dataType)
}
private case class UDTConverter[A >: Null](
udt: UserDefinedType[A]) extends CatalystTypeConverter[A, A, Any] {
// toCatalyst (it calls toCatalystImpl) will do null check.
override def toCatalystImpl(scalaValue: A): Any = udt.serialize(scalaValue)
override def toScala(catalystValue: Any): A = {
if (catalystValue == null) null else udt.deserialize(catalystValue)
}
override def toScalaImpl(row: InternalRow, column: Int): A =
toScala(row.get(column, udt.sqlType))
}
/** Converter for arrays, sequences, and Java iterables. */
private case class ArrayConverter(
elementType: DataType) extends CatalystTypeConverter[Any, Seq[Any], ArrayData] {
private[this] val elementConverter = getConverterForType(elementType)
override def toCatalystImpl(scalaValue: Any): ArrayData = {
scalaValue match {
case a: Array[_] =>
new GenericArrayData(a.map(elementConverter.toCatalyst))
case s: scala.collection.Seq[_] =>
new GenericArrayData(s.map(elementConverter.toCatalyst).toArray)
case i: JavaIterable[_] =>
val iter = i.iterator
val convertedIterable = scala.collection.mutable.ArrayBuffer.empty[Any]
while (iter.hasNext) {
val item = iter.next()
convertedIterable += elementConverter.toCatalyst(item)
}
new GenericArrayData(convertedIterable.toArray)
case other => throw new IllegalArgumentException(
s"The value (${other.toString}) of the type (${other.getClass.getCanonicalName}) "
+ s"cannot be converted to an array of ${elementType.catalogString}")
}
}
override def toScala(catalystValue: ArrayData): Seq[Any] = {
if (catalystValue == null) {
null
} else if (isPrimitive(elementType)) {
catalystValue.toArray[Any](elementType)
} else {
val result = new Array[Any](catalystValue.numElements())
catalystValue.foreach(elementType, (i, e) => {
result(i) = elementConverter.toScala(e)
})
result
}
}
override def toScalaImpl(row: InternalRow, column: Int): Seq[Any] =
toScala(row.getArray(column))
}
private case class MapConverter(
keyType: DataType,
valueType: DataType)
extends CatalystTypeConverter[Any, Map[Any, Any], MapData] {
private[this] val keyConverter = getConverterForType(keyType)
private[this] val valueConverter = getConverterForType(valueType)
override def toCatalystImpl(scalaValue: Any): MapData = {
val keyFunction = (k: Any) => keyConverter.toCatalyst(k)
val valueFunction = (k: Any) => valueConverter.toCatalyst(k)
scalaValue match {
case map: Map[_, _] => ArrayBasedMapData(map, keyFunction, valueFunction)
case javaMap: JavaMap[_, _] => ArrayBasedMapData(javaMap, keyFunction, valueFunction)
case other => throw new IllegalArgumentException(
s"The value (${other.toString}) of the type (${other.getClass.getCanonicalName}) "
+ "cannot be converted to a map type with "
+ s"key type (${keyType.catalogString}) and value type (${valueType.catalogString})")
}
}
override def toScala(catalystValue: MapData): Map[Any, Any] = {
if (catalystValue == null) {
null
} else {
val keys = catalystValue.keyArray().toArray[Any](keyType)
val values = catalystValue.valueArray().toArray[Any](valueType)
val convertedKeys =
if (isPrimitive(keyType)) keys else keys.map(keyConverter.toScala)
val convertedValues =
if (isPrimitive(valueType)) values else values.map(valueConverter.toScala)
Utils.toMap(convertedKeys, convertedValues)
}
}
override def toScalaImpl(row: InternalRow, column: Int): Map[Any, Any] =
toScala(row.getMap(column))
}
private case class StructConverter(
structType: StructType) extends CatalystTypeConverter[Any, Row, InternalRow] {
private[this] val converters = structType.fields.map { f => getConverterForType(f.dataType) }
override def toCatalystImpl(scalaValue: Any): InternalRow = scalaValue match {
case row: Row =>
val ar = new Array[Any](row.size)
var idx = 0
while (idx < row.size) {
ar(idx) = converters(idx).toCatalyst(row(idx))
idx += 1
}
new GenericInternalRow(ar)
case p: Product =>
val ar = new Array[Any](structType.size)
val iter = p.productIterator
var idx = 0
while (idx < structType.size) {
ar(idx) = converters(idx).toCatalyst(iter.next())
idx += 1
}
new GenericInternalRow(ar)
case other => throw new IllegalArgumentException(
s"The value (${other.toString}) of the type (${other.getClass.getCanonicalName}) "
+ s"cannot be converted to ${structType.catalogString}")
}
override def toScala(row: InternalRow): Row = {
if (row == null) {
null
} else {
val ar = new Array[Any](row.numFields)
var idx = 0
while (idx < row.numFields) {
ar(idx) = converters(idx).toScala(row, idx)
idx += 1
}
new GenericRowWithSchema(ar, structType)
}
}
override def toScalaImpl(row: InternalRow, column: Int): Row =
toScala(row.getStruct(column, structType.size))
}
private object StringConverter extends CatalystTypeConverter[Any, String, UTF8String] {
override def toCatalystImpl(scalaValue: Any): UTF8String = scalaValue match {
case str: String => UTF8String.fromString(str)
case utf8: UTF8String => utf8
case chr: Char => UTF8String.fromString(chr.toString)
case ac: Array[Char] => UTF8String.fromString(String.valueOf(ac))
case other => throw new IllegalArgumentException(
s"The value (${other.toString}) of the type (${other.getClass.getCanonicalName}) "
+ s"cannot be converted to the string type")
}
override def toScala(catalystValue: UTF8String): String =
if (catalystValue == null) null else catalystValue.toString
override def toScalaImpl(row: InternalRow, column: Int): String =
row.getUTF8String(column).toString
}
private object DateConverter extends CatalystTypeConverter[Any, Date, Any] {
override def toCatalystImpl(scalaValue: Any): Int = scalaValue match {
case d: Date => DateTimeUtils.fromJavaDate(d)
case l: LocalDate => DateTimeUtils.localDateToDays(l)
case other => throw new IllegalArgumentException(
s"The value (${other.toString}) of the type (${other.getClass.getCanonicalName}) "
+ s"cannot be converted to the ${DateType.sql} type")
}
override def toScala(catalystValue: Any): Date =
if (catalystValue == null) null else DateTimeUtils.toJavaDate(catalystValue.asInstanceOf[Int])
override def toScalaImpl(row: InternalRow, column: Int): Date =
DateTimeUtils.toJavaDate(row.getInt(column))
}
private object LocalDateConverter extends CatalystTypeConverter[Any, LocalDate, Any] {
override def toCatalystImpl(scalaValue: Any): Int =
DateConverter.toCatalystImpl(scalaValue)
override def toScala(catalystValue: Any): LocalDate = {
if (catalystValue == null) null
else DateTimeUtils.daysToLocalDate(catalystValue.asInstanceOf[Int])
}
override def toScalaImpl(row: InternalRow, column: Int): LocalDate =
DateTimeUtils.daysToLocalDate(row.getInt(column))
}
private object TimestampConverter extends CatalystTypeConverter[Any, Timestamp, Any] {
override def toCatalystImpl(scalaValue: Any): Long = scalaValue match {
case t: Timestamp => DateTimeUtils.fromJavaTimestamp(t)
case i: Instant => DateTimeUtils.instantToMicros(i)
case other => throw new IllegalArgumentException(
s"The value (${other.toString}) of the type (${other.getClass.getCanonicalName}) "
+ s"cannot be converted to the ${TimestampType.sql} type")
}
override def toScala(catalystValue: Any): Timestamp =
if (catalystValue == null) null
else DateTimeUtils.toJavaTimestamp(catalystValue.asInstanceOf[Long])
override def toScalaImpl(row: InternalRow, column: Int): Timestamp =
DateTimeUtils.toJavaTimestamp(row.getLong(column))
}
private object InstantConverter extends CatalystTypeConverter[Any, Instant, Any] {
override def toCatalystImpl(scalaValue: Any): Long =
TimestampConverter.toCatalystImpl(scalaValue)
override def toScala(catalystValue: Any): Instant =
if (catalystValue == null) null
else DateTimeUtils.microsToInstant(catalystValue.asInstanceOf[Long])
override def toScalaImpl(row: InternalRow, column: Int): Instant =
DateTimeUtils.microsToInstant(row.getLong(column))
}
private object TimestampNTZConverter
extends CatalystTypeConverter[Any, LocalDateTime, Any] {
override def toCatalystImpl(scalaValue: Any): Any = scalaValue match {
case l: LocalDateTime => DateTimeUtils.localDateTimeToMicros(l)
case other => throw new IllegalArgumentException(
s"The value (${other.toString}) of the type (${other.getClass.getCanonicalName}) "
+ s"cannot be converted to the ${TimestampNTZType.sql} type")
}
override def toScala(catalystValue: Any): LocalDateTime =
if (catalystValue == null) null
else DateTimeUtils.microsToLocalDateTime(catalystValue.asInstanceOf[Long])
override def toScalaImpl(row: InternalRow, column: Int): LocalDateTime =
DateTimeUtils.microsToLocalDateTime(row.getLong(column))
}
private class DecimalConverter(dataType: DecimalType)
extends CatalystTypeConverter[Any, JavaBigDecimal, Decimal] {
private val nullOnOverflow = !SQLConf.get.ansiEnabled
override def toCatalystImpl(scalaValue: Any): Decimal = {
val decimal = scalaValue match {
case d: BigDecimal => Decimal(d)
case d: JavaBigDecimal => Decimal(d)
case d: JavaBigInteger => Decimal(d)
case d: Decimal => d
case other => throw new IllegalArgumentException(
s"The value (${other.toString}) of the type (${other.getClass.getCanonicalName}) "
+ s"cannot be converted to ${dataType.catalogString}")
}
decimal.toPrecision(dataType.precision, dataType.scale, Decimal.ROUND_HALF_UP, nullOnOverflow)
}
override def toScala(catalystValue: Decimal): JavaBigDecimal = {
if (catalystValue == null) null
else catalystValue.toJavaBigDecimal
}
override def toScalaImpl(row: InternalRow, column: Int): JavaBigDecimal =
row.getDecimal(column, dataType.precision, dataType.scale).toJavaBigDecimal
}
private abstract class PrimitiveConverter[T] extends CatalystTypeConverter[T, Any, Any] {
final override def toScala(catalystValue: Any): Any = catalystValue
final override def toCatalystImpl(scalaValue: T): Any = scalaValue
}
private object BooleanConverter extends PrimitiveConverter[Boolean] {
override def toScalaImpl(row: InternalRow, column: Int): Boolean = row.getBoolean(column)
}
private object ByteConverter extends PrimitiveConverter[Byte] {
override def toScalaImpl(row: InternalRow, column: Int): Byte = row.getByte(column)
}
private object ShortConverter extends PrimitiveConverter[Short] {
override def toScalaImpl(row: InternalRow, column: Int): Short = row.getShort(column)
}
private object IntConverter extends PrimitiveConverter[Int] {
override def toScalaImpl(row: InternalRow, column: Int): Int = row.getInt(column)
}
private object LongConverter extends PrimitiveConverter[Long] {
override def toScalaImpl(row: InternalRow, column: Int): Long = row.getLong(column)
}
private object FloatConverter extends PrimitiveConverter[Float] {
override def toScalaImpl(row: InternalRow, column: Int): Float = row.getFloat(column)
}
private object DoubleConverter extends PrimitiveConverter[Double] {
override def toScalaImpl(row: InternalRow, column: Int): Double = row.getDouble(column)
}
private case class DurationConverter(endField: Byte)
extends CatalystTypeConverter[Duration, Duration, Any] {
override def toCatalystImpl(scalaValue: Duration): Long = {
IntervalUtils.durationToMicros(scalaValue, endField)
}
override def toScala(catalystValue: Any): Duration = {
if (catalystValue == null) null
else IntervalUtils.microsToDuration(catalystValue.asInstanceOf[Long])
}
override def toScalaImpl(row: InternalRow, column: Int): Duration =
IntervalUtils.microsToDuration(row.getLong(column))
}
private case class PeriodConverter(endField: Byte)
extends CatalystTypeConverter[Period, Period, Any] {
override def toCatalystImpl(scalaValue: Period): Int = {
IntervalUtils.periodToMonths(scalaValue, endField)
}
override def toScala(catalystValue: Any): Period = {
if (catalystValue == null) null
else IntervalUtils.monthsToPeriod(catalystValue.asInstanceOf[Int])
}
override def toScalaImpl(row: InternalRow, column: Int): Period =
IntervalUtils.monthsToPeriod(row.getInt(column))
}
/**
* Creates a converter function that will convert Scala objects to the specified Catalyst type.
* Typical use case would be converting a collection of rows that have the same schema. You will
* call this function once to get a converter, and apply it to every row.
*/
def createToCatalystConverter(dataType: DataType): Any => Any = {
if (isPrimitive(dataType)) {
// Although the `else` branch here is capable of handling inbound conversion of primitives,
// we add some special-case handling for those types here. The motivation for this relates to
// Java method invocation costs: if we have rows that consist entirely of primitive columns,
// then returning the same conversion function for all of the columns means that the call site
// will be monomorphic instead of polymorphic. In microbenchmarks, this actually resulted in
// a measurable performance impact. Note that this optimization will be unnecessary if we
// use code generation to construct Scala Row -> Catalyst Row converters.
def convert(maybeScalaValue: Any): Any = {
maybeScalaValue match {
case opt: Option[Any] => opt.orNull
case _ => maybeScalaValue
}
}
convert
} else {
getConverterForType(dataType).toCatalyst
}
}
/**
* Creates a converter function that will convert Catalyst types to Scala type.
* Typical use case would be converting a collection of rows that have the same schema. You will
* call this function once to get a converter, and apply it to every row.
*/
def createToScalaConverter(dataType: DataType): Any => Any = {
if (isPrimitive(dataType)) {
identity
} else {
getConverterForType(dataType).toScala
}
}
/**
* Converts Scala objects to Catalyst rows / types.
*
* Note: This should be called before do evaluation on Row
* (It does not support UDT)
* This is used to create an RDD or test results with correct types for Catalyst.
*/
def convertToCatalyst(a: Any): Any = a match {
case s: String => StringConverter.toCatalyst(s)
case c: Char => StringConverter.toCatalyst(c.toString)
case d: Date => DateConverter.toCatalyst(d)
case ld: LocalDate => LocalDateConverter.toCatalyst(ld)
case t: Timestamp => TimestampConverter.toCatalyst(t)
case i: Instant => InstantConverter.toCatalyst(i)
case l: LocalDateTime => TimestampNTZConverter.toCatalyst(l)
case d: BigDecimal => new DecimalConverter(DecimalType(d.precision, d.scale)).toCatalyst(d)
case d: JavaBigDecimal => new DecimalConverter(DecimalType(d.precision, d.scale)).toCatalyst(d)
case seq: Seq[Any] => new GenericArrayData(seq.map(convertToCatalyst).toArray)
case r: Row => InternalRow(r.toSeq.map(convertToCatalyst): _*)
case arr: Array[Byte] => arr
case arr: Array[Char] => StringConverter.toCatalyst(arr)
case arr: Array[_] => new GenericArrayData(arr.map(convertToCatalyst))
case map: Map[_, _] =>
ArrayBasedMapData(
map,
(key: Any) => convertToCatalyst(key),
(value: Any) => convertToCatalyst(value))
case d: Duration => DurationConverter(SECOND).toCatalyst(d)
case p: Period => PeriodConverter(MONTH).toCatalyst(p)
case other => other
}
/**
* Converts Catalyst types used internally in rows to standard Scala types
* This method is slow, and for batch conversion you should be using converter
* produced by createToScalaConverter.
*/
def convertToScala(catalystValue: Any, dataType: DataType): Any = {
createToScalaConverter(dataType)(catalystValue)
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦