spark typed 源码

  • 2022-10-20
  • 浏览 (246)

spark typed 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/expressions/scalalang/typed.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.expressions.scalalang

import org.apache.spark.sql._
import org.apache.spark.sql.execution.aggregate._

/**
 * Type-safe functions available for `Dataset` operations in Scala.
 *
 * Java users should use [[org.apache.spark.sql.expressions.javalang.typed]].
 *
 * @since 2.0.0
 */
@deprecated("please use untyped builtin aggregate functions.", "3.0.0")
// scalastyle:off
object typed {
  // scalastyle:on

  // Note: whenever we update this file, we should update the corresponding Java version too.
  // The reason we have separate files for Java and Scala is because in the Scala version, we can
  // use tighter types (primitive types) for return types, whereas in the Java version we can only
  // use boxed primitive types.
  // For example, avg in the Scala version returns Scala primitive Double, whose bytecode
  // signature is just a java.lang.Object; avg in the Java version returns java.lang.Double.

  // TODO: This is pretty hacky. Maybe we should have an object for implicit encoders.
  private val implicits = new SQLImplicits {
    override protected def _sqlContext: SQLContext = null
  }

  /**
   * Average aggregate function.
   *
   * @since 2.0.0
   */
  def avg[IN](f: IN => Double): TypedColumn[IN, Double] = new TypedAverage(f).toColumn

  /**
   * Count aggregate function.
   *
   * @since 2.0.0
   */
  def count[IN](f: IN => Any): TypedColumn[IN, Long] = new TypedCount(f).toColumn

  /**
   * Sum aggregate function for floating point (double) type.
   *
   * @since 2.0.0
   */
  def sum[IN](f: IN => Double): TypedColumn[IN, Double] = new TypedSumDouble[IN](f).toColumn

  /**
   * Sum aggregate function for integral (long, i.e. 64 bit integer) type.
   *
   * @since 2.0.0
   */
  def sumLong[IN](f: IN => Long): TypedColumn[IN, Long] = new TypedSumLong[IN](f).toColumn
}

相关信息

spark 源码目录

相关文章

spark ArrayWrappers 源码

spark InMemoryStore 源码

spark KVIndex 源码

spark KVStore 源码

spark KVStoreIterator 源码

spark KVStoreSerializer 源码

spark KVStoreView 源码

spark KVTypeInfo 源码

spark LevelDB 源码

spark LevelDBIterator 源码

0  赞