spark PMMLExportable 源码

  • 2022-10-20
  • 浏览 (225)

spark PMMLExportable 代码

文件路径:/mllib/src/main/scala/org/apache/spark/mllib/pmml/PMMLExportable.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.mllib.pmml

import java.io.{File, OutputStream, StringWriter}
import javax.xml.transform.stream.StreamResult

import org.jpmml.model.JAXBUtil

import org.apache.spark.SparkContext
import org.apache.spark.annotation.Since
import org.apache.spark.mllib.pmml.export.PMMLModelExportFactory

/**
 * Export model to the PMML format
 * Predictive Model Markup Language (PMML) is an XML-based file format
 * developed by the Data Mining Group (www.dmg.org).
 */
@Since("1.4.0")
trait PMMLExportable {

  /**
   * Export the model to the stream result in PMML format
   */
  private def toPMML(streamResult: StreamResult): Unit = {
    val pmmlModelExport = PMMLModelExportFactory.createPMMLModelExport(this)
    JAXBUtil.marshalPMML(pmmlModelExport.getPmml, streamResult)
  }

  /**
   * Export the model to a local file in PMML format
   */
  @Since("1.4.0")
  def toPMML(localPath: String): Unit = {
    toPMML(new StreamResult(new File(localPath)))
  }

  /**
   * Export the model to a directory on a distributed file system in PMML format
   */
  @Since("1.4.0")
  def toPMML(sc: SparkContext, path: String): Unit = {
    val pmml = toPMML()
    sc.parallelize(Seq(pmml), 1).saveAsTextFile(path)
  }

  /**
   * Export the model to the OutputStream in PMML format
   */
  @Since("1.4.0")
  def toPMML(outputStream: OutputStream): Unit = {
    toPMML(new StreamResult(outputStream))
  }

  /**
   * Export the model to a String in PMML format
   */
  @Since("1.4.0")
  def toPMML(): String = {
    val writer = new StringWriter
    toPMML(new StreamResult(writer))
    writer.toString
  }

}

相关信息

spark 源码目录

相关文章

spark ArrayWrappers 源码

spark InMemoryStore 源码

spark KVIndex 源码

spark KVStore 源码

spark KVStoreIterator 源码

spark KVStoreSerializer 源码

spark KVStoreView 源码

spark KVTypeInfo 源码

spark LevelDB 源码

spark LevelDBIterator 源码

0  赞