spark GraphImpl 源码

  • 2022-10-20
  • 浏览 (250)

spark GraphImpl 代码

文件路径:/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.graphx.impl

import scala.reflect.{classTag, ClassTag}

import org.apache.spark.HashPartitioner
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel

/**
 * An implementation of [[org.apache.spark.graphx.Graph]] to support computation on graphs.
 *
 * Graphs are represented using two RDDs: `vertices`, which contains vertex attributes and the
 * routing information for shipping vertex attributes to edge partitions, and
 * `replicatedVertexView`, which contains edges and the vertex attributes mentioned by each edge.
 */
class GraphImpl[VD: ClassTag, ED: ClassTag] protected (
    @transient val vertices: VertexRDD[VD],
    @transient val replicatedVertexView: ReplicatedVertexView[VD, ED])
  extends Graph[VD, ED] with Serializable {

  /** Default constructor is provided to support serialization */
  protected def this() = this(null, null)

  @transient override val edges: EdgeRDDImpl[ED, VD] = replicatedVertexView.edges

  /** Return an RDD that brings edges together with their source and destination vertices. */
  @transient override lazy val triplets: RDD[EdgeTriplet[VD, ED]] = {
    replicatedVertexView.upgrade(vertices, true, true)
    replicatedVertexView.edges.partitionsRDD.mapPartitions(_.flatMap {
      case (pid, part) => part.tripletIterator()
    })
  }

  override def persist(newLevel: StorageLevel): Graph[VD, ED] = {
    vertices.persist(newLevel)
    replicatedVertexView.edges.persist(newLevel)
    this
  }

  override def cache(): Graph[VD, ED] = {
    vertices.cache()
    replicatedVertexView.edges.cache()
    this
  }

  override def checkpoint(): Unit = {
    vertices.checkpoint()
    replicatedVertexView.edges.checkpoint()
  }

  override def isCheckpointed: Boolean = {
    vertices.isCheckpointed && replicatedVertexView.edges.isCheckpointed
  }

  override def getCheckpointFiles: Seq[String] = {
    Seq(vertices.getCheckpointFile, replicatedVertexView.edges.getCheckpointFile).flatMap {
      case Some(path) => Seq(path)
      case None => Seq.empty
    }
  }

  override def unpersist(blocking: Boolean = false): Graph[VD, ED] = {
    unpersistVertices(blocking)
    replicatedVertexView.edges.unpersist(blocking)
    this
  }

  override def unpersistVertices(blocking: Boolean = false): Graph[VD, ED] = {
    vertices.unpersist(blocking)
    // TODO: unpersist the replicated vertices in `replicatedVertexView` but leave the edges alone
    this
  }

  override def partitionBy(partitionStrategy: PartitionStrategy): Graph[VD, ED] = {
    partitionBy(partitionStrategy, edges.partitions.length)
  }

  override def partitionBy(
      partitionStrategy: PartitionStrategy, numPartitions: Int): Graph[VD, ED] = {
    val edTag = classTag[ED]
    val vdTag = classTag[VD]
    val newEdges = edges.withPartitionsRDD(edges.map { e =>
      val part: PartitionID = partitionStrategy.getPartition(e.srcId, e.dstId, numPartitions)
      (part, (e.srcId, e.dstId, e.attr))
    }
      .partitionBy(new HashPartitioner(numPartitions))
      .mapPartitionsWithIndex(
        { (pid: Int, iter: Iterator[(PartitionID, (VertexId, VertexId, ED))]) =>
          val builder = new EdgePartitionBuilder[ED, VD]()(edTag, vdTag)
          iter.foreach { message =>
            val data = message._2
            builder.add(data._1, data._2, data._3)
          }
          val edgePartition = builder.toEdgePartition
          Iterator((pid, edgePartition))
        }, preservesPartitioning = true)).cache()
    GraphImpl.fromExistingRDDs(vertices.withEdges(newEdges), newEdges)
  }

  override def reverse: Graph[VD, ED] = {
    new GraphImpl(vertices.reverseRoutingTables(), replicatedVertexView.reverse())
  }

  override def mapVertices[VD2: ClassTag]
    (f: (VertexId, VD) => VD2)(implicit eq: VD =:= VD2 = null): Graph[VD2, ED] = {
    // The implicit parameter eq will be populated by the compiler if VD and VD2 are equal, and left
    // null if not
    if (eq != null) {
      vertices.cache()
      // The map preserves type, so we can use incremental replication
      val newVerts = vertices.mapVertexPartitions(_.map(f)).cache()
      val changedVerts = vertices.asInstanceOf[VertexRDD[VD2]].diff(newVerts)
      val newReplicatedVertexView = replicatedVertexView.asInstanceOf[ReplicatedVertexView[VD2, ED]]
        .updateVertices(changedVerts)
      new GraphImpl(newVerts, newReplicatedVertexView)
    } else {
      // The map does not preserve type, so we must re-replicate all vertices
      GraphImpl(vertices.mapVertexPartitions(_.map(f)), replicatedVertexView.edges)
    }
  }

  override def mapEdges[ED2: ClassTag](
      f: (PartitionID, Iterator[Edge[ED]]) => Iterator[ED2]): Graph[VD, ED2] = {
    val newEdges = replicatedVertexView.edges
      .mapEdgePartitions((pid, part) => part.map(f(pid, part.iterator)))
    new GraphImpl(vertices, replicatedVertexView.withEdges(newEdges))
  }

  override def mapTriplets[ED2: ClassTag](
      f: (PartitionID, Iterator[EdgeTriplet[VD, ED]]) => Iterator[ED2],
      tripletFields: TripletFields): Graph[VD, ED2] = {
    vertices.cache()
    replicatedVertexView.upgrade(vertices, tripletFields.useSrc, tripletFields.useDst)
    val newEdges = replicatedVertexView.edges.mapEdgePartitions { (pid, part) =>
      part.map(f(pid, part.tripletIterator(tripletFields.useSrc, tripletFields.useDst)))
    }
    new GraphImpl(vertices, replicatedVertexView.withEdges(newEdges))
  }

  override def subgraph(
      epred: EdgeTriplet[VD, ED] => Boolean = x => true,
      vpred: (VertexId, VD) => Boolean = (a, b) => true): Graph[VD, ED] = {
    vertices.cache()
    // Filter the vertices, reusing the partitioner and the index from this graph
    val newVerts = vertices.mapVertexPartitions(_.filter(vpred))
    // Filter the triplets. We must always upgrade the triplet view fully because vpred always runs
    // on both src and dst vertices
    replicatedVertexView.upgrade(vertices, true, true)
    val newEdges = replicatedVertexView.edges.filter(epred, vpred)
    new GraphImpl(newVerts, replicatedVertexView.withEdges(newEdges))
  }

  override def mask[VD2: ClassTag, ED2: ClassTag] (
      other: Graph[VD2, ED2]): Graph[VD, ED] = {
    val newVerts = vertices.innerJoin(other.vertices) { (vid, v, w) => v }
    val newEdges = replicatedVertexView.edges.innerJoin(other.edges) { (src, dst, v, w) => v }
    new GraphImpl(newVerts, replicatedVertexView.withEdges(newEdges))
  }

  override def groupEdges(merge: (ED, ED) => ED): Graph[VD, ED] = {
    val newEdges = replicatedVertexView.edges.mapEdgePartitions(
      (pid, part) => part.groupEdges(merge))
    new GraphImpl(vertices, replicatedVertexView.withEdges(newEdges))
  }

  // ///////////////////////////////////////////////////////////////////////////////////////////////
  // Lower level transformation methods
  // ///////////////////////////////////////////////////////////////////////////////////////////////

  override def aggregateMessagesWithActiveSet[A: ClassTag](
      sendMsg: EdgeContext[VD, ED, A] => Unit,
      mergeMsg: (A, A) => A,
      tripletFields: TripletFields,
      activeSetOpt: Option[(VertexRDD[_], EdgeDirection)]): VertexRDD[A] = {

    vertices.cache()
    // For each vertex, replicate its attribute only to partitions where it is
    // in the relevant position in an edge.
    replicatedVertexView.upgrade(vertices, tripletFields.useSrc, tripletFields.useDst)
    val view = activeSetOpt match {
      case Some((activeSet, _)) =>
        replicatedVertexView.withActiveSet(activeSet)
      case None =>
        replicatedVertexView
    }
    val activeDirectionOpt = activeSetOpt.map(_._2)

    // Map and combine.
    val preAgg = view.edges.partitionsRDD.mapPartitions(_.flatMap {
      case (pid, edgePartition) =>
        // Choose scan method
        val activeFraction = edgePartition.numActives.getOrElse(0) / edgePartition.indexSize.toFloat
        activeDirectionOpt match {
          case Some(EdgeDirection.Both) =>
            if (activeFraction < 0.8) {
              edgePartition.aggregateMessagesIndexScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.Both)
            } else {
              edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.Both)
            }
          case Some(EdgeDirection.Either) =>
            // TODO: Because we only have a clustered index on the source vertex ID, we can't filter
            // the index here. Instead we have to scan all edges and then do the filter.
            edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
              EdgeActiveness.Either)
          case Some(EdgeDirection.Out) =>
            if (activeFraction < 0.8) {
              edgePartition.aggregateMessagesIndexScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.SrcOnly)
            } else {
              edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.SrcOnly)
            }
          case Some(EdgeDirection.In) =>
            edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
              EdgeActiveness.DstOnly)
          case _ => // None
            edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
              EdgeActiveness.Neither)
        }
    }).setName("GraphImpl.aggregateMessages - preAgg")

    // do the final reduction reusing the index map
    vertices.aggregateUsingIndex(preAgg, mergeMsg)
  }

  override def outerJoinVertices[U: ClassTag, VD2: ClassTag]
      (other: RDD[(VertexId, U)])
      (updateF: (VertexId, VD, Option[U]) => VD2)
      (implicit eq: VD =:= VD2 = null): Graph[VD2, ED] = {
    // The implicit parameter eq will be populated by the compiler if VD and VD2 are equal, and left
    // null if not
    if (eq != null) {
      vertices.cache()
      // updateF preserves type, so we can use incremental replication
      val newVerts = vertices.leftJoin(other)(updateF).cache()
      val changedVerts = vertices.asInstanceOf[VertexRDD[VD2]].diff(newVerts)
      val newReplicatedVertexView = replicatedVertexView.asInstanceOf[ReplicatedVertexView[VD2, ED]]
        .updateVertices(changedVerts)
      new GraphImpl(newVerts, newReplicatedVertexView)
    } else {
      // updateF does not preserve type, so we must re-replicate all vertices
      val newVerts = vertices.leftJoin(other)(updateF)
      GraphImpl(newVerts, replicatedVertexView.edges)
    }
  }

} // end of class GraphImpl


object GraphImpl {

  /**
   * Create a graph from edges, setting referenced vertices to `defaultVertexAttr`.
   */
  def apply[VD: ClassTag, ED: ClassTag](
      edges: RDD[Edge[ED]],
      defaultVertexAttr: VD,
      edgeStorageLevel: StorageLevel,
      vertexStorageLevel: StorageLevel): GraphImpl[VD, ED] = {
    fromEdgeRDD(EdgeRDD.fromEdges(edges), defaultVertexAttr, edgeStorageLevel, vertexStorageLevel)
  }

  /**
   * Create a graph from EdgePartitions, setting referenced vertices to `defaultVertexAttr`.
   */
  def fromEdgePartitions[VD: ClassTag, ED: ClassTag](
      edgePartitions: RDD[(PartitionID, EdgePartition[ED, VD])],
      defaultVertexAttr: VD,
      edgeStorageLevel: StorageLevel,
      vertexStorageLevel: StorageLevel): GraphImpl[VD, ED] = {
    fromEdgeRDD(EdgeRDD.fromEdgePartitions(edgePartitions), defaultVertexAttr, edgeStorageLevel,
      vertexStorageLevel)
  }

  /**
   * Create a graph from vertices and edges, setting missing vertices to `defaultVertexAttr`.
   */
  def apply[VD: ClassTag, ED: ClassTag](
      vertices: RDD[(VertexId, VD)],
      edges: RDD[Edge[ED]],
      defaultVertexAttr: VD,
      edgeStorageLevel: StorageLevel,
      vertexStorageLevel: StorageLevel): GraphImpl[VD, ED] = {
    val edgeRDD = EdgeRDD.fromEdges(edges)(classTag[ED], classTag[VD])
      .withTargetStorageLevel(edgeStorageLevel)
    val vertexRDD = VertexRDD(vertices, edgeRDD, defaultVertexAttr)
      .withTargetStorageLevel(vertexStorageLevel)
    GraphImpl(vertexRDD, edgeRDD)
  }

  /**
   * Create a graph from a VertexRDD and an EdgeRDD with arbitrary replicated vertices. The
   * VertexRDD must already be set up for efficient joins with the EdgeRDD by calling
   * `VertexRDD.withEdges` or an appropriate VertexRDD constructor.
   */
  def apply[VD: ClassTag, ED: ClassTag](
      vertices: VertexRDD[VD],
      edges: EdgeRDD[ED]): GraphImpl[VD, ED] = {

    vertices.cache()

    // Convert the vertex partitions in edges to the correct type
    val newEdges = edges.asInstanceOf[EdgeRDDImpl[ED, _]]
      .mapEdgePartitions((pid, part) => part.withoutVertexAttributes[VD])
      .cache()

    GraphImpl.fromExistingRDDs(vertices, newEdges)
  }

  /**
   * Create a graph from a VertexRDD and an EdgeRDD with the same replicated vertex type as the
   * vertices. The VertexRDD must already be set up for efficient joins with the EdgeRDD by calling
   * `VertexRDD.withEdges` or an appropriate VertexRDD constructor.
   */
  def fromExistingRDDs[VD: ClassTag, ED: ClassTag](
      vertices: VertexRDD[VD],
      edges: EdgeRDD[ED]): GraphImpl[VD, ED] = {
    new GraphImpl(vertices, new ReplicatedVertexView(edges.asInstanceOf[EdgeRDDImpl[ED, VD]]))
  }

  /**
   * Create a graph from an EdgeRDD with the correct vertex type, setting missing vertices to
   * `defaultVertexAttr`. The vertices will have the same number of partitions as the EdgeRDD.
   */
  private def fromEdgeRDD[VD: ClassTag, ED: ClassTag](
      edges: EdgeRDDImpl[ED, VD],
      defaultVertexAttr: VD,
      edgeStorageLevel: StorageLevel,
      vertexStorageLevel: StorageLevel): GraphImpl[VD, ED] = {
    val edgesCached = edges.withTargetStorageLevel(edgeStorageLevel).cache()
    val vertices =
      VertexRDD.fromEdges(edgesCached, edgesCached.partitions.length, defaultVertexAttr)
      .withTargetStorageLevel(vertexStorageLevel)
    fromExistingRDDs(vertices, edgesCached)
  }

} // end of object GraphImpl

相关信息

spark 源码目录

相关文章

spark EdgePartition 源码

spark EdgePartitionBuilder 源码

spark EdgeRDDImpl 源码

spark ReplicatedVertexView 源码

spark RoutingTablePartition 源码

spark ShippableVertexPartition 源码

spark VertexPartition 源码

spark VertexPartitionBase 源码

spark VertexPartitionBaseOps 源码

spark VertexRDDImpl 源码

0  赞