spark ParquetScan 源码
spark ParquetScan 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/parquet/ParquetScan.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.datasources.v2.parquet
import scala.collection.JavaConverters._
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.parquet.hadoop.ParquetInputFormat
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.expressions.Expression
import org.apache.spark.sql.connector.expressions.aggregate.Aggregation
import org.apache.spark.sql.connector.read.PartitionReaderFactory
import org.apache.spark.sql.execution.datasources.{AggregatePushDownUtils, PartitioningAwareFileIndex, RowIndexUtil}
import org.apache.spark.sql.execution.datasources.parquet.{ParquetOptions, ParquetReadSupport, ParquetWriteSupport}
import org.apache.spark.sql.execution.datasources.v2.FileScan
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.sources.Filter
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.util.CaseInsensitiveStringMap
import org.apache.spark.util.SerializableConfiguration
case class ParquetScan(
sparkSession: SparkSession,
hadoopConf: Configuration,
fileIndex: PartitioningAwareFileIndex,
dataSchema: StructType,
readDataSchema: StructType,
readPartitionSchema: StructType,
pushedFilters: Array[Filter],
options: CaseInsensitiveStringMap,
pushedAggregate: Option[Aggregation] = None,
partitionFilters: Seq[Expression] = Seq.empty,
dataFilters: Seq[Expression] = Seq.empty) extends FileScan {
override def isSplitable(path: Path): Boolean = {
// If aggregate is pushed down, only the file footer will be read once,
// so file should not be split across multiple tasks.
pushedAggregate.isEmpty &&
// SPARK-39634: Allow file splitting in combination with row index generation once
// the fix for PARQUET-2161 is available.
!RowIndexUtil.isNeededForSchema(readSchema)
}
override def readSchema(): StructType = {
// If aggregate is pushed down, schema has already been pruned in `ParquetScanBuilder`
// and no need to call super.readSchema()
if (pushedAggregate.nonEmpty) readDataSchema else super.readSchema()
}
override def createReaderFactory(): PartitionReaderFactory = {
val readDataSchemaAsJson = readDataSchema.json
hadoopConf.set(ParquetInputFormat.READ_SUPPORT_CLASS, classOf[ParquetReadSupport].getName)
hadoopConf.set(
ParquetReadSupport.SPARK_ROW_REQUESTED_SCHEMA,
readDataSchemaAsJson)
hadoopConf.set(
ParquetWriteSupport.SPARK_ROW_SCHEMA,
readDataSchemaAsJson)
hadoopConf.set(
SQLConf.SESSION_LOCAL_TIMEZONE.key,
sparkSession.sessionState.conf.sessionLocalTimeZone)
hadoopConf.setBoolean(
SQLConf.NESTED_SCHEMA_PRUNING_ENABLED.key,
sparkSession.sessionState.conf.nestedSchemaPruningEnabled)
hadoopConf.setBoolean(
SQLConf.CASE_SENSITIVE.key,
sparkSession.sessionState.conf.caseSensitiveAnalysis)
// Sets flags for `ParquetToSparkSchemaConverter`
hadoopConf.setBoolean(
SQLConf.PARQUET_BINARY_AS_STRING.key,
sparkSession.sessionState.conf.isParquetBinaryAsString)
hadoopConf.setBoolean(
SQLConf.PARQUET_INT96_AS_TIMESTAMP.key,
sparkSession.sessionState.conf.isParquetINT96AsTimestamp)
hadoopConf.setBoolean(
SQLConf.PARQUET_TIMESTAMP_NTZ_ENABLED.key,
sparkSession.sessionState.conf.parquetTimestampNTZEnabled)
val broadcastedConf = sparkSession.sparkContext.broadcast(
new SerializableConfiguration(hadoopConf))
val sqlConf = sparkSession.sessionState.conf
ParquetPartitionReaderFactory(
sqlConf,
broadcastedConf,
dataSchema,
readDataSchema,
readPartitionSchema,
pushedFilters,
pushedAggregate,
new ParquetOptions(options.asCaseSensitiveMap.asScala.toMap, sqlConf))
}
override def equals(obj: Any): Boolean = obj match {
case p: ParquetScan =>
val pushedDownAggEqual = if (pushedAggregate.nonEmpty && p.pushedAggregate.nonEmpty) {
AggregatePushDownUtils.equivalentAggregations(pushedAggregate.get, p.pushedAggregate.get)
} else {
pushedAggregate.isEmpty && p.pushedAggregate.isEmpty
}
super.equals(p) && dataSchema == p.dataSchema && options == p.options &&
equivalentFilters(pushedFilters, p.pushedFilters) && pushedDownAggEqual
case _ => false
}
override def hashCode(): Int = getClass.hashCode()
lazy private val (pushedAggregationsStr, pushedGroupByStr) = if (pushedAggregate.nonEmpty) {
(seqToString(pushedAggregate.get.aggregateExpressions),
seqToString(pushedAggregate.get.groupByExpressions))
} else {
("[]", "[]")
}
override def description(): String = {
super.description() + ", PushedFilters: " + seqToString(pushedFilters) +
", PushedAggregation: " + pushedAggregationsStr +
", PushedGroupBy: " + pushedGroupByStr
}
override def getMetaData(): Map[String, String] = {
super.getMetaData() ++ Map("PushedFilters" -> seqToString(pushedFilters)) ++
Map("PushedAggregation" -> pushedAggregationsStr) ++
Map("PushedGroupBy" -> pushedGroupByStr)
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦