spark JavaLogisticRegressionSummaryExample 源码

  • 2022-10-20
  • 浏览 (336)

spark JavaLogisticRegressionSummaryExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaLogisticRegressionSummaryExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.ml.classification.BinaryLogisticRegressionTrainingSummary;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.functions;
// $example off$

public class JavaLogisticRegressionSummaryExample {
  public static void main(String[] args) {
    SparkSession spark = SparkSession
      .builder()
      .appName("JavaLogisticRegressionSummaryExample")
      .getOrCreate();

    // Load training data
    Dataset<Row> training = spark.read().format("libsvm")
      .load("data/mllib/sample_libsvm_data.txt");

    LogisticRegression lr = new LogisticRegression()
      .setMaxIter(10)
      .setRegParam(0.3)
      .setElasticNetParam(0.8);

    // Fit the model
    LogisticRegressionModel lrModel = lr.fit(training);

    // $example on$
    // Extract the summary from the returned LogisticRegressionModel instance trained in the earlier
    // example
    BinaryLogisticRegressionTrainingSummary trainingSummary = lrModel.binarySummary();

    // Obtain the loss per iteration.
    double[] objectiveHistory = trainingSummary.objectiveHistory();
    for (double lossPerIteration : objectiveHistory) {
      System.out.println(lossPerIteration);
    }

    // Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.
    Dataset<Row> roc = trainingSummary.roc();
    roc.show();
    roc.select("FPR").show();
    System.out.println(trainingSummary.areaUnderROC());

    // Get the threshold corresponding to the maximum F-Measure and rerun LogisticRegression with
    // this selected threshold.
    Dataset<Row> fMeasure = trainingSummary.fMeasureByThreshold();
    double maxFMeasure = fMeasure.select(functions.max("F-Measure")).head().getDouble(0);
    double bestThreshold = fMeasure.where(fMeasure.col("F-Measure").equalTo(maxFMeasure))
      .select("threshold").head().getDouble(0);
    lrModel.setThreshold(bestThreshold);
    // $example off$

    spark.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaAFTSurvivalRegressionExample 源码

spark JavaALSExample 源码

spark JavaBinarizerExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaBucketedRandomProjectionLSHExample 源码

spark JavaBucketizerExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaChiSquareTestExample 源码

spark JavaCorrelationExample 源码

spark JavaCountVectorizerExample 源码

0  赞