harmony 鸿蒙如何使用OpenGL绘制3D图形

  • 2023-06-24
  • 浏览 (3088)

如何使用OpenGL绘制3D图形

场景介绍

XComponent控件常用于相机预览流的显示和游戏画面的绘制,在OpenHarmony上,可以配合Native Window创建OpenGL开发环境,并最终将OpenGL绘制的图形显示到XComponent控件。本文将采用”Native C++“模板,调用OpenGL ES图形库绘制3D图形(三棱锥),并将结果渲染到页面的XComponent控件中进行展示。同时,还可以在屏幕上通过触摸滑动手势对三棱锥进行旋转,最终得到不同角度的图形并显示到页面。

效果展示

首页 滑动屏幕旋转变换
3d-graphic-index.png 3d-graphic-rotate.png

环境要求

  • 本示例仅支持在标准系统上运行。

  • IDE:DevEco Studio 3.1 Beta2

  • SDK:Ohos_sdk_public 3.2.11.9 (API Version 9 Release)

实现思路

利用XComponent组件,并配合OpenHarmony的native侧提供的native window用来创建EGL/OpenGLES环境,进而使用标准的OpenGL ES相关API进行应用开发。其中 XComponent组件作为一种绘制组件,通常用于满足开发者较为复杂的自定义绘制需求,当XComponent设置为surface类型时通常用于EGL/OpenGLES和媒体数据写入,并将其显示在XComponent组件上。

开发步骤

1、环境搭建

我们首先要完成应用开发环境的搭建,本示例运行DAYU200开发板上。

  • 搭建应用开发环境

(1)开始前,请参考完成DevEco Studio的安装和开发环境配置

说明:

为确保运行效果,本案例以使用DevEco Studio 3.1 Beta2 SDK:API9 (3.2.11.9)版本为例。

3d-graphic-creat-project.png

(2)开发环境配置完成后,创建工程(模板选择“Native C++”),选择eTS语言开发。

  • 应用调测工程创建完成后,选择使用真机进行调测。

(1)将搭载OpenHarmony标准系统的开发板与电脑连接。

(2)点击File> Project Structure… > Project>SigningConfigs界面勾选“Automatically generate signature”,等待自动签名完成即可,最后点击“OK”。如下图所示:

3d-graphic-creat-signature.png

(3)在编辑窗口右上角的工具栏,点击”运行”按钮运行。

3d-graphic-run.png

2、源码结构

  • 代码结构分析,整个工程的代码结构如下:

3d-graphic-creat-code-struct.png

  • 文件说明如下:
  .
  └── main
      ├── cpp
      │   ├── app_napi.cpp      //C++与ArkTS中XComponent控件交互的napi接口实现
      │   ├── CMakeLists.txt    //CMake规则配置文件,NAPI C/C++代码编译需要配置该文件
      │   ├── include
      │   │   ├── app_napi.h
      │   │   ├── tetrahedron.h //三棱锥类实现头文件
      │   │   └── util
      │   ├── module.cpp        //NAPI模块注册
      │   ├── napi_manager.cpp
      │   ├── napi_util.cpp
      │   ├── tetrahedron.cpp   //三棱锥的绘制OpenGL实现
      │   └── type
      │       └── libentry
      ├── ets
      │   ├── entryability
      │   │   └── EntryAbility.ts
      │   └── pages
      │       └── Index.ets      //主页面
      ├── module.json5
      └── resources              //资源文件目录
          ├── base
          │   ├── element
          │   ├── media
          │   └── profile
          ├── en_US
          │   └── element
          ├── rawfile
          └── zh_CN
              └── element

3、绘制流程

  • 3D绘制函数调用流程如下:
graph LR
A[napi init]
B[AppNapi Export]
C[AppNapi OnSurfaceCreatedCB]
D[AppNapi OnSurfaceCreated]
E[triangles Init]
F[triangles Update]


A ----> B
B ----> C
C -- Xcomponent, window--> D
D -- Native window --> E
E ----> F
  • 在Tetrahedron类的Update方法中使用GLES3库着色器绘制,最终通过ArkUI的XComponent组件显示,流程如下:
graph LR
A[glClear]
B[设置gl_Position]
C[设置gl_FragColor]
D[glDrawArrays]


A ----> B
B ----> C
C ----> D

4、C++(OpenGL)实现

C++端方法源码是工程的entry/src/main/cpp/tetrahedron.cpp文件。

  • 注册模块先定义一个模块,在entry/src/main/cpp/module.cpp文件中,对应结构体类型为napi_module,模块定义好后,调用NAPI提供的模块注册函数napi_module_register(napi_module* mod)注册到系统中;
  /*
   * Napi Module define
   */
  static napi_module appNapiModule = {
      .nm_version = 1,
      .nm_flags = 0,
      .nm_filename = nullptr,
      .nm_register_func = Init,
      .nm_modname = "tetrahedron_napi",
      .nm_priv = ((void*)0),
      .reserved = { 0 },
  };
  
  /*
   * Module register function
   */
  extern "C" __attribute__((constructor)) void RegisterModule(void)
  {
      napi_module_register(&appNapiModule);
  }
  • 调用OpenGL相关图形API绘制三棱锥

(1)初始化

  int32_t Tetrahedron::Init(void *window, int32_t width,  int32_t height)
  {
      window_ = window;
      width_ = width;
      height_ = height;
  
      LOGI("Init window = %{public}p, w = %{public}d, h = %{public}d.", window, width, height);
      mEglWindow = reinterpret_cast<EGLNativeWindowType>(window);
  
      // 1. create sharedcontext
      mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
      if (mEGLDisplay == EGL_NO_DISPLAY) {
          LOGE("unable to get EGL display.");
          return -1;
      }
  
      EGLint eglMajVers, eglMinVers;
      if (!eglInitialize(mEGLDisplay, &eglMajVers, &eglMinVers)) {
          mEGLDisplay = EGL_NO_DISPLAY;
          LOGE("unable to initialize display");
          return -1;
      }
  
      int version = 3;
      mEGLConfig = getConfig(version, mEGLDisplay);
      if (mEGLConfig == nullptr) {
          LOGE("GLContextInit config ERROR");
          return -1;
      }
  
      // 2. Create EGL Surface from Native Window
      EGLint winAttribs[] = {EGL_GL_COLORSPACE_KHR, EGL_GL_COLORSPACE_SRGB_KHR, EGL_NONE};
      if (mEglWindow) {
          mEGLSurface = eglCreateWindowSurface(mEGLDisplay, mEGLConfig, mEglWindow, winAttribs);
          if (mEGLSurface == nullptr) {
              LOGE("eglCreateContext eglSurface is null");
              return -1;
          }
      }
  
      // 3. Create EGLContext from
      int attrib3_list[] = {
          EGL_CONTEXT_CLIENT_VERSION, 2,
          EGL_NONE
      };
  
      mEGLContext = eglCreateContext(mEGLDisplay, mEGLConfig, mSharedEGLContext, attrib3_list);
      if (!eglMakeCurrent(mEGLDisplay, mEGLSurface, mEGLSurface, mEGLContext)) {
          LOGE("eglMakeCurrent error = %{public}d", eglGetError());
      }
  
      mProgramHandle = CreateProgram(vertexShader, fragmentShader);
      if (!mProgramHandle) {
          LOGE("Could not create CreateProgram");
          return -1;
      }
  
      LOGI("Init success.");
  
      return 0;
  }

其中,顶点着色器实现如下:

  char vertexShader[] =
      "attribute  vec4 apos;\n"
      "attribute  vec4 a_color;\n"
      "attribute  vec4 a_normal;\n"
      "uniform vec3 u_lightColor;\n"
      "uniform vec3 u_lightDirection;\n"
      "uniform mat4 a_mx;\n"
      "uniform mat4 a_my;\n"
      "varying  vec4 v_color;\n"
      "void main(){\n"
      "float radian = radians(30.0);\n"
      "float cos = cos(radian);\n"
      "float sin = sin(radian);\n"
      "  gl_Position = a_mx * a_my * vec4(apos.x, apos.y, apos.z, 1.0);\n"
      "  vec3 normal = normalize((a_mx * a_my * a_normal).xyz);\n"
      "  float dot = max(dot(u_lightDirection, normal), 0.0);\n"
      "  vec3 reflectedLight = u_lightColor * a_color.rgb * dot;\n"
      "  v_color = vec4(reflectedLight, a_color.a);\n"
      "}\n\0";

(2)图像渲染

​ OpenGL ES图像渲染中着色器涉及到内置变量如下,所谓内置变量就是不用声明可以直接赋值,主要是为了实现特定的功能。

序号 内置变量 含义 值数据类型
1 gl_PointSize 点渲染模式,方形点区域渲染像素大小 float
2 gl_Position 顶点位置坐标 vec4
3 gl_FragColor 片元颜色值 vec4
4 gl_FragCoord 片元坐标,单位像素 vec2
5 gl_PointCoord 点渲染模式对应点像素坐标 vec2

​ 而本次渲染涉及到两个内建变量:gl_Position和gl_FragColor;

​ 其中,gl_Position变量表示最终传入片元着色器片元化要使用的顶点位置坐标,取值范围为-1.0到1.0,点超过该范围将自动被裁剪。初始化代码如下:

gl_Position = a_mx * a_my * vec4(apos.x, apos.y, apos.z, 1.0);

a_my为y轴旋转矩阵,获取到旋转角度后初始化旋转矩阵;a_mx为x轴旋转矩阵,apos为绘制多面体点矩阵;

这些值的初始化通过glUniformMatrix4fv函数实现:

    mxGL_APICALL void GL_APIENTRY glUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)

其中参数的含义如下:

序号 参数名 含义
1 location uniform对应的变量名
2 count 需要加载数据的数组元素的数量或者需要修改的矩阵的数量
3 transpose 指明矩阵是列优先(column major)矩阵(GL_FALSE)还是行优先(row major)矩阵(GL_TRUE)
4 value 指向由count个元素的数组的指针

​ gl_FragColor变量用于确定图形的颜色,可通过设置不同片段着色器的颜色,实现立体效果。

        片段着色器实现如下:

char fragmentShader[] =
    "precision mediump float;\n"
    "varying vec4 v_color;\n"
    "void main () {\n"
    "   gl_FragColor = v_color;\n"
    "}\n\0";

       三棱锥核心绘制代码如下:

 void Tetrahedron::Update(float angleX, float angleY)
 {
      angleY_ = angleY;
      angleX_ = angleX;
      glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
      glClear(GL_COLOR_BUFFER_BIT);
      glUseProgram(mProgramHandle);

      unsigned int aposLocation = glGetAttribLocation(mProgramHandle, "apos");
      unsigned int a_color = glGetAttribLocation(mProgramHandle, "a_color");
      unsigned int a_normal = glGetAttribLocation(mProgramHandle, "a_normal");
      unsigned int u_lightColor = glGetUniformLocation(mProgramHandle, "u_lightColor");
      unsigned int u_lightDirection = glGetUniformLocation(mProgramHandle, "u_lightDirection");
      unsigned int mx = glGetUniformLocation(mProgramHandle, "a_mx");
      unsigned int my = glGetUniformLocation(mProgramHandle, "a_my");

     /**
     y轴旋转度
     **/
     float radianY = angleY * PI /180.0;
     float cosY = cosf(radianY);
     float sinY = sinf(radianY);
     float myArr[] = {
         cosY,0,-sinY,0,  0,1,0,0,  sinY,0,cosY,0,  0,0,0,1
    };
     glUniformMatrix4fv(my, 1,false, myArr);

     /**
     x轴旋转度
     **/
     float radianX = angleX * PI /180.0;
     float cosX = cosf(radianX);
     float sinX = sinf(radianX);
     float mxArr[] = {
         1,0,0,0,  0,cosX,-sinX,0,  0,sinX,cosX,0,  0,0,0,1
    };
     glUniformMatrix4fv(mx, 1,false, mxArr);

     /**
      给平行光传入颜色和方向数据,RGB(1,1,1),单位向量(x,y,z)
      **/
     glUniform3f(u_lightColor, 1.0, 1.0, 1.0);
     // 保证向量(x,y,z)的长度为1,即单位向量
     float x = 1.0/sqrt(15), y = 2.0/sqrt(15), z = 3.0/sqrt(15);
     glUniform3f(u_lightDirection, x,-y,z);

     /**
      创建顶点位置数据数组data,原点到各顶点的距离都为1
     **/
     float data[] = {
         -0.75, -0.50, -0.43, 0.75, -0.50, -0.43, 0.00, -0.50, 0.87,
         0.75, -0.50, -0.43, 0.00, -0.50, 0.87, 0.00, 1.00, 0.00,
         0.00, -0.50, 0.87, 0.00, 1.00, 0.00, -0.75, -0.50, -0.43,
         0.00, 1.00, 0.00, -0.75, -0.50, -0.43, 0.75, -0.50, -0.43,
     };

     /**
      创建顶点颜色数组colorData
      **/
     float colorData[] = {
         1,0,0, 1,0,0, 1,0,0,//红色——面1
         1,0,0, 1,0,0, 1,0,0,//红色——面2
         1,0,0, 1,0,0, 1,0,0,//红色——面3
         1,0,0, 1,0,0, 1,0,0 //红色——面4
     };

     /**
      顶点法向量数组normalData
      **/
     float normalData[] = {
         0.00, -1.00, 0.00,  0.00, -1.00, 0.00,  0.00, -1.00, 0.00,
         -0.83, -0.28, -0.48,  -0.83, -0.28, -0.48,  -0.83, -0.28, -0.48,
         -0.83, 0.28, 0.48,  -0.83, 0.28, 0.48,  -0.83, 0.28, 0.48,
         0.00, -0.28, 0.96,  0.00, -0.28, 0.96,  0.00, -0.28, 0.96,
     };

     /**
      创建缓冲区buffer,传入顶点位置数据data
      **/
     unsigned int buffer;
     glGenBuffers(1, &buffer);
     glBindBuffer(GL_ARRAY_BUFFER, buffer);
     glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW);
     glVertexAttribPointer(aposLocation, 3, GL_FLOAT, GL_FALSE, 0, 0);
     glEnableVertexAttribArray(aposLocation);

     unsigned int normalBuffer;
     glGenBuffers(1, &normalBuffer);
     glBindBuffer(GL_ARRAY_BUFFER, normalBuffer);
     glBufferData(GL_ARRAY_BUFFER, sizeof(normalData), normalData, GL_STATIC_DRAW);
     glVertexAttribPointer(a_normal, 3, GL_FLOAT, GL_FALSE, 0, 0);
     glEnableVertexAttribArray(a_normal);

     /**
      创建缓冲区colorBuffer,传入顶点颜色数据colorData
      **/
     unsigned int colorBuffer;
     glGenBuffers(1, &colorBuffer);
     glBindBuffer(GL_ARRAY_BUFFER, colorBuffer);
     glBufferData(GL_ARRAY_BUFFER, sizeof(colorData), colorData, GL_STATIC_DRAW);
     glVertexAttribPointer(a_color, 3, GL_FLOAT, GL_FALSE, 0, 0);
     glEnableVertexAttribArray(a_color);

     /* 执行绘制命令 */
     glDrawArrays(GL_TRIANGLES, 0, 12);
 }

5、NAPI接口定义

接口定义为固定写法,在napi_property_descriptor desc[]中,我们需要使用DECLARE_NAPI_FUNCTION宏,以Add函数为例,将函数名字符串”Add”与具体的实现方法napi_value Add(napi_env env, napi_callback_info info)进行关联,即DECLARE_NAPI_FUNCTION(“Add”, Add)最终添加到desc[]。如下所示,其中UpdateAngle对应的是Native C++的接口,其应用端的接口对应为UpdateAngle,NAPI通过napi_define_properties接口将napi_property_descriptor结构体中的2个接口绑定在一起,并通过exports变量对外导出,使应用层可以调用UpdateAngle和getContext方法。

/*
 * function for module exports
 */
EXTERN_C_START
static napi_value Init(napi_env env, napi_value exports)
{
    LOGE("Init");
    napi_property_descriptor desc[] = {
        DECLARE_NAPI_FUNCTION("getContext", NapiManager::GetContext),
        DECLARE_NAPI_FUNCTION("UpdateAngle", AppNapi::UpdateAngle),
    };

    NAPI_CALL(env, napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc));

    bool ret = NapiManager::GetInstance()->Export(env, exports);
    if (!ret) {
        LOGE("Init failed");
    }

    return exports;
}
EXTERN_C_END

6、NAPI接口实现

​ Tetrahedron::UpdateAngle:传入angleX和angleY两个参数,分别为为绕X,Y轴的旋转角度;作为参数调用Tetrahedron::UpdateAngle(float angleX, float angleY)重新渲染,具体代码如下:

napi_value AppNapi::UpdateAngle(napi_env env, napi_callback_info info){
    LOGE("Tetrahedron UpdateAngle");
    size_t requireArgc = 2;
    size_t argc = 2;
    int speed = 3;
    napi_value args[2] = {nullptr};

    napi_get_cb_info(env, info, &argc, args , nullptr, nullptr);

    napi_valuetype valuetype0;
    napi_typeof(env, args[0], &valuetype0);

    napi_valuetype valuetype1;
    napi_typeof(env, args[1], &valuetype1);

    double offsetX;
    napi_get_value_double(env, args[0], &offsetX);

    double offsetY;
    napi_get_value_double(env, args[1], &offsetY);

    /* 处理offsetX偏移角度 */
    float tetrahedron_angleX = tetrahedron_->GetAngleX();
    float tetrahedron_angleY = tetrahedron_->GetAngleY();

    /* 上下滑动绕x轴 */
    if(offsetY < 0){
        tetrahedron_angleX = tetrahedron_angleX + speed;
    }
    else{
        tetrahedron_angleX = tetrahedron_angleX - speed;
    }

    /* 左右滑动绕y轴 */
    if(offsetX < 0){
        triangles_angleY = triangles_angleY + speed;
    }
    else{
        triangles_angleY = triangles_angleY - speed;
    }

    tetrahedron_angleY = normalize(tetrahedron_angleY);
    tetrahedron_angleX = normalize(tetrahedron_angleX);
    tetrahedron_->Update(tetrahedron_angleX, tetrahedron_angleY);

    /* 创建一个数组 */
    napi_value ret;
    napi_create_array(env, &ret);

    /* 设置数组并返回 */
    napi_value num;
    napi_create_int32(env, tetrahedron_angleX, &num);
    napi_set_element(env, ret, 0, num);
    napi_create_int32(env, tetrahedron_angleY, &num);
    napi_set_element(env, ret, 1, num);

    return ret;
}

​ GetContext:得到渲染所XComponent的上下文context,以便后续绑定XComponentID渲染,具体代码如下:

napi_value NapiManager::GetContext(napi_env env, napi_callback_info info)
{
    napi_status status;
    napi_value exports;
    size_t argc = 1;
    napi_value args[1];
    NAPI_CALL(env, napi_get_cb_info(env, info, &argc, args, nullptr, nullptr));

    if (argc != 1) {
        napi_throw_type_error(env, NULL, "Wrong number of arguments");
        return nullptr;
    }

    napi_valuetype valuetype;
    status = napi_typeof(env, args[0], &valuetype);
    if (status != napi_ok) {
        return nullptr;
    }
    if (valuetype != napi_number) {
        napi_throw_type_error(env, NULL, "Wrong arguments");
        return nullptr;
    }

    int64_t value;
    NAPI_CALL(env, napi_get_value_int64(env, args[0], &value));
    NAPI_CALL(env, napi_create_object(env, &exports));

    switch (value) {
        case int64_t(ContextType::APP_LIFECYCLE):
            {
                /* AppInit 对应 app.ets中的应用生命周期 onCreate, onShow, onHide, onDestroy */
                LOGD("GetContext APP_LIFECYCLE");
                /* Register App Lifecycle */
                napi_property_descriptor desc[] = {
                    DECLARE_NAPI_FUNCTION("onCreate", NapiManager::NapiOnCreate),
                    DECLARE_NAPI_FUNCTION("onShow", NapiManager::NapiOnShow),
                    DECLARE_NAPI_FUNCTION("onHide", NapiManager::NapiOnHide),
                    DECLARE_NAPI_FUNCTION("onDestroy", NapiManager::NapiOnDestroy),
                };
                NAPI_CALL(env, napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc));
            }

            break;
        case int64_t(ContextType::JS_PAGE_LIFECYCLE):
            {
                /* JS Page */
                LOGD("GetContext JS_PAGE_LIFECYCLE");
                napi_property_descriptor desc[] = {
                    DECLARE_NAPI_FUNCTION("onPageShow", NapiManager::NapiOnPageShow),
                    DECLARE_NAPI_FUNCTION("onPageHide", NapiManager::NapiOnPageHide),
                };
                NAPI_CALL(env, napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc));
            }
            break;
        default:
            LOGE("unknown type");
    }
    return exports;
}

​ Export:先拿到XComponentID等信息后,通过NapiManager得到context,再通过context得到处理3D绘画的appNapi类并进行相应输出处理。部分代码如下(具体请查看源码):

bool NapiManager::Export(napi_env env, napi_value exports)
{
    napi_status status;
    napi_value exportInstance = nullptr;
    OH_NativeXComponent *nativeXComponent = nullptr;
    int32_t ret;
    char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { };
    uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;

    status = napi_get_named_property(env, exports, OH_NATIVE_XCOMPONENT_OBJ, &exportInstance);
    if (status != napi_ok) {
        return false;
    }

    status = napi_unwrap(env, exportInstance, reinterpret_cast<void**>(&nativeXComponent));
    if (status != napi_ok) {
        return false;
    }

    ret = OH_NativeXComponent_GetXComponentId(nativeXComponent, idStr, &idSize);
    if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
        return false;
    }

    std::string id(idStr);
    auto context = NapiManager::GetInstance();
    if (context) {
        context->SetNativeXComponent(id, nativeXComponent);
        auto app = context->GetApp(id);
        app->SetNativeXComponent(nativeXComponent);
        app->Export(env, exports);
        return true;
    }

    return false;
}

7、ArkTS接口定义

(1)修改 index.d.ts 用于对外提供方法、说明(命名为tetrahedron_napi.d.ts)。

//传入x,y偏移量并返回x,y旋转角
export const UpdateAngle:(offsetX:number,offsetY:number)=>Array;

(2)在同目录下的 oh-package.json5 文件中将 tetrahedron_napi.d.ts 与cpp文件关联起来。

{
  "name": "libtetrahedron_napi.so",
  "types": "./tetrahedron_napi.d.ts",
  "version": "1.0.0",
  "description": "Please describe the basic information."
}

(3)修改项目的oh-package.json5文件,添加动态库。

{
  "license": "",
  "devDependencies": {
    "@types/libtetrahedron_napi.so": "file:./src/main/cpp/type/libentry"
  },
  "author": "",
  "name": "entry",
  "description": "Please describe the basic information.",
  "main": "",
  "version": "1.0.0",
  "dependencies": {}
}

8、CMake规则配置

entry/src/main/cpp/CMakeLists.txt是CMake规则文件。

project:用于设置项目(project)的名称。

set(CMAKE_CXX_STANDARD 11):设置C++标准。

include_directories:用于包含头文件。

add_library:编译产生链接库。

target_link_libraries:指定链接给定目标和/或其依赖项时要使用的库或标志,在PUBLIC字段后的库会被链接到tetrahedron_napi中。

# the minimum version of CMake.
cmake_minimum_required(VERSION 3.4.1)

project(TetrahedronHap)

set(NATIVE_ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR})

include_directories(${NATIVE_ROOT_PATH}
                    ${NATIVE_ROOT_PATH}/include
                    ${NATIVE_ROOT_PATH}/include/util)

add_library(triangles_napi SHARED
            module.cpp
            app_napi.cpp
            tetrahedron.cpp
            napi_manager.cpp
            napi_util.cpp)


target_link_libraries(tetrahedron_napi PUBLIC EGL)
target_link_libraries(tetrahedron_napi PUBLIC GLESv3)
target_link_libraries(tetrahedron_napi PUBLIC hilog_ndk.z)
target_link_libraries(tetrahedron_napi PUBLIC ace_ndk.z)
target_link_libraries(tetrahedron_napi PUBLIC ace_napi.z)
target_link_libraries(tetrahedron_napi PUBLIC libc++.a)
target_link_libraries(tetrahedron_napi PUBLIC z)
target_link_libraries(tetrahedron_napi PUBLIC uv)
target_link_libraries(tetrahedron_napi PUBLIC libace_napi.z.so)

9、ArkTS实现

界面实现部分代码如下(具体请参考源码),其中:libraryname参数对应先前设置的模块名:tetrahedron_napi

import hilog from '@ohos.hilog';
import tetrahedron_napi from 'libtetrahedron_napi.so'

@Entry
@Component
struct Index {
  private xcomponentContext = null;
  private xcomponentId = 'tetrahedron';
  private offset_x: number = 0.000;
  private offset_y: number = 0.000;
  private index: number = 0;
  private type_: number = 5;
  private touchTypeDown: number = 0;
  private touchTypeUp: number = 1;
  private touchTypeMove: number = 2;
  private touchTypeCancel: number = 3;
  @State startVisible: Visibility = Visibility.Visible;

  @State angleArray: Array<number> = new Array<number>();
  private panOption: PanGestureOptions = new PanGestureOptions({ direction: PanDirection.All })
  @State offsetX: number = 0
  @State offsetY: number = 0
  @State positionX: number = 0
  @State positionY: number = 0
  @State message: string = 'wu'

  async aboutToAppear() {
  }

  build() {
    Column() {
      Text($r('app.string.EntryAbility_desc'))
        .fontSize($r('app.float.head_font_24'))
        .lineHeight($r('app.float.wh_value_33'))
        .fontFamily('HarmonyHeiTi-Bold')
        .fontWeight(FontWeight.Bold)
        .fontColor($r('app.color.font_color_182431'))
        .textOverflow({ overflow: TextOverflow.Ellipsis })
        .textAlign(TextAlign.Start)
        .margin({ top: $r('app.float.wh_value_13'), bottom: $r('app.float.wh_value_15') });

      Text(this.angleArray[0]&this.angleArray[1]?'X轴旋转:'+this.angleArray[0].toString() +'°\nY轴旋转:'+this.angleArray[1].toString() + '°':'')
        .fontSize($r('app.float.head_font_24'))
        .lineHeight($r('app.float.wh_value_33'))
        .fontFamily('HarmonyHeiTi-Bold')
        .fontWeight(FontWeight.Bold)
        .fontColor($r('app.color.font_color_182431'))
        .textOverflow({ overflow: TextOverflow.Ellipsis })
        .textAlign(TextAlign.Start)
        .margin({ top: $r('app.float.wh_value_13'), bottom: $r('app.float.wh_value_15') });

      Stack({ alignContent: Alignment.Center }) {
        XComponent({ id: this.xcomponentId, type: 'surface', libraryname: 'tetrahedron_napi' })
          .onLoad((context) => {
            hilog.info(0x0000, 'Xcomponent', 'onLoad')
            this.xcomponentContext = context;
            globalThis.xcomponentContext = this.xcomponentContext;
            globalThis.xcomponentId = this.xcomponentId;
            globalThis.touchTypeDown = this.touchTypeDown;
            globalThis.touchTypeUp = this.touchTypeUp;
            globalThis.type_ = this.type_;
            globalThis.index = this.index;
            globalThis.touchTypeMove = this.touchTypeMove;
            globalThis.touchTypeCancel = this.touchTypeCancel;
            globalThis.offset_x = this.offset_x;
            globalThis.offset_y = this.offset_y;
          })
          .width($r('app.float.wh_value_362'))
          .height($r('app.float.wh_value_362'))
          .key('tetrahedron')
          .backgroundColor('#00000000')
          .onDestroy(() => {
            globalThis.flag = false;
            hilog.info(0x0000, "Xcomponent", 'onDestroy')
          })
      }
      .gesture(
        PanGesture(this.panOption)
          .onActionStart((event: GestureEvent) => {
            console.info('onActionStart');
          })
          .onActionUpdate((event: GestureEvent) => {
            this.angleArray = tetrahedron_napi.UpdateAngle(event.offsetX, event.offsetY);
            hilog.info(0x0000, "Gesture", 'offSet:' + event.offsetX + "," + event.offsetY);
          })
          .onActionEnd(() => {
            this.positionX = this.offsetX;
            this.positionY = this.offsetY;
            console.info('onActionEnd');
          })
      )
      .width('100%')
      .height('100%')
      .backgroundColor('#00000000')
    }
  }
}

你可能感兴趣的鸿蒙文章

harmony 鸿蒙案例介绍

harmony 鸿蒙应用质量提升案例-应用Crash闪退问题案例分析

harmony 鸿蒙应用质量提升案例-稳定性测试常见JS_ERROR问题分析与定位

harmony 鸿蒙如何通过显示动画实现书籍翻页动效

harmony 鸿蒙如何实现波纹进度条

harmony 鸿蒙折叠展开动效

harmony 鸿蒙如何实现内容下拉变化

harmony 鸿蒙如何删除多选框选项

harmony 鸿蒙如何为同一组件在不同场景下绑定不同的业务逻辑

harmony 鸿蒙分布式画布流转场景

3  赞