hadoop Join 源码

  • 2022-10-20
  • 浏览 (238)

haddop Join 代码

文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-examples/src/main/java/org/apache/hadoop/examples/Join.java

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.examples;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.ClusterStatus;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.OutputFormat;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.join.CompositeInputFormat;
import org.apache.hadoop.mapreduce.lib.join.TupleWritable;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
 * Given a set of sorted datasets keyed with the same class and yielding
 * equal partitions, it is possible to effect a join of those datasets 
 * prior to the map. The example facilitates the same.
 *
 * To run: bin/hadoop jar build/hadoop-examples.jar join
 *            [-r <i>reduces</i>]
 *            [-inFormat <i>input format class</i>] 
 *            [-outFormat <i>output format class</i>] 
 *            [-outKey <i>output key class</i>] 
 *            [-outValue <i>output value class</i>] 
 *            [-joinOp &lt;inner|outer|override&gt;]
 *            [<i>in-dir</i>]* <i>in-dir</i> <i>out-dir</i> 
 */
public class Join extends Configured implements Tool {
  public static final String REDUCES_PER_HOST = "mapreduce.join.reduces_per_host";
  static int printUsage() {
    System.out.println("join [-r <reduces>] " +
                       "[-inFormat <input format class>] " +
                       "[-outFormat <output format class>] " + 
                       "[-outKey <output key class>] " +
                       "[-outValue <output value class>] " +
                       "[-joinOp <inner|outer|override>] " +
                       "[input]* <input> <output>");
    ToolRunner.printGenericCommandUsage(System.out);
    return 2;
  }

  /**
   * The main driver for sort program.
   * Invoke this method to submit the map/reduce job.
   * @throws IOException When there is communication problems with the 
   *                     job tracker.
   */
  @SuppressWarnings("unchecked")
  public int run(String[] args) throws Exception {
    Configuration conf = getConf();
    JobClient client = new JobClient(conf);
    ClusterStatus cluster = client.getClusterStatus();
    int num_reduces = (int) (cluster.getMaxReduceTasks() * 0.9);
    String join_reduces = conf.get(REDUCES_PER_HOST);
    if (join_reduces != null) {
       num_reduces = cluster.getTaskTrackers() * 
                       Integer.parseInt(join_reduces);
    }
    Job job = Job.getInstance(conf);
    job.setJobName("join");
    job.setJarByClass(Sort.class);

    job.setMapperClass(Mapper.class);        
    job.setReducerClass(Reducer.class);

    Class<? extends InputFormat> inputFormatClass = 
      SequenceFileInputFormat.class;
    Class<? extends OutputFormat> outputFormatClass = 
      SequenceFileOutputFormat.class;
    Class<? extends WritableComparable> outputKeyClass = BytesWritable.class;
    Class<? extends Writable> outputValueClass = TupleWritable.class;
    String op = "inner";
    List<String> otherArgs = new ArrayList<String>();
    for(int i=0; i < args.length; ++i) {
      try {
        if ("-r".equals(args[i])) {
          num_reduces = Integer.parseInt(args[++i]);
        } else if ("-inFormat".equals(args[i])) {
          inputFormatClass = 
            Class.forName(args[++i]).asSubclass(InputFormat.class);
        } else if ("-outFormat".equals(args[i])) {
          outputFormatClass = 
            Class.forName(args[++i]).asSubclass(OutputFormat.class);
        } else if ("-outKey".equals(args[i])) {
          outputKeyClass = 
            Class.forName(args[++i]).asSubclass(WritableComparable.class);
        } else if ("-outValue".equals(args[i])) {
          outputValueClass = 
            Class.forName(args[++i]).asSubclass(Writable.class);
        } else if ("-joinOp".equals(args[i])) {
          op = args[++i];
        } else {
          otherArgs.add(args[i]);
        }
      } catch (NumberFormatException except) {
        System.out.println("ERROR: Integer expected instead of " + args[i]);
        return printUsage();
      } catch (ArrayIndexOutOfBoundsException except) {
        System.out.println("ERROR: Required parameter missing from " +
            args[i-1]);
        return printUsage(); // exits
      }
    }

    // Set user-supplied (possibly default) job configs
    job.setNumReduceTasks(num_reduces);

    if (otherArgs.size() < 2) {
      System.out.println("ERROR: Wrong number of parameters: ");
      return printUsage();
    }

    FileOutputFormat.setOutputPath(job, 
      new Path(otherArgs.remove(otherArgs.size() - 1)));
    List<Path> plist = new ArrayList<Path>(otherArgs.size());
    for (String s : otherArgs) {
      plist.add(new Path(s));
    }

    job.setInputFormatClass(CompositeInputFormat.class);
    job.getConfiguration().set(CompositeInputFormat.JOIN_EXPR, 
      CompositeInputFormat.compose(op, inputFormatClass,
      plist.toArray(new Path[0])));
    job.setOutputFormatClass(outputFormatClass);

    job.setOutputKeyClass(outputKeyClass);
    job.setOutputValueClass(outputValueClass);

    Date startTime = new Date();
    System.out.println("Job started: " + startTime);
    int ret = job.waitForCompletion(true) ? 0 : 1 ;
    Date end_time = new Date();
    System.out.println("Job ended: " + end_time);
    System.out.println("The job took " + 
        (end_time.getTime() - startTime.getTime()) /1000 + " seconds.");
    return ret;
  }

  public static void main(String[] args) throws Exception {
    int res = ToolRunner.run(new Configuration(), new Join(), args);
    System.exit(res);
  }

}

相关信息

hadoop 源码目录

相关文章

hadoop AggregateWordCount 源码

hadoop AggregateWordHistogram 源码

hadoop BaileyBorweinPlouffe 源码

hadoop DBCountPageView 源码

hadoop ExampleDriver 源码

hadoop Grep 源码

hadoop MultiFileWordCount 源码

hadoop QuasiMonteCarlo 源码

hadoop RandomTextWriter 源码

hadoop RandomWriter 源码

0  赞