spark LocalKMeans 源码

  • 2022-10-20
  • 浏览 (253)

spark LocalKMeans 代码

文件路径:/mllib/src/main/scala/org/apache/spark/mllib/clustering/LocalKMeans.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.mllib.clustering

import scala.util.Random

import org.apache.spark.internal.Logging
import org.apache.spark.mllib.linalg.BLAS.{axpy, scal}
import org.apache.spark.mllib.linalg.Vectors

/**
 * An utility object to run K-means locally. This is private to the ML package because it's used
 * in the initialization of KMeans but not meant to be publicly exposed.
 */
private[mllib] object LocalKMeans extends Logging {

  /**
   * Run K-means++ on the weighted point set `points`. This first does the K-means++
   * initialization procedure and then rounds of Lloyd's algorithm.
   */
  def kMeansPlusPlus(
      seed: Int,
      points: Array[VectorWithNorm],
      weights: Array[Double],
      k: Int,
      maxIterations: Int
  ): Array[VectorWithNorm] = {
    val rand = new Random(seed)
    val dimensions = points(0).vector.size
    val centers = new Array[VectorWithNorm](k)

    // Initialize centers by sampling using the k-means++ procedure.
    centers(0) = pickWeighted(rand, points, weights).toDense
    val costArray = points.map(EuclideanDistanceMeasure.fastSquaredDistance(_, centers(0)))

    for (i <- 1 until k) {
      val sum = costArray.zip(weights).map(p => p._1 * p._2).sum
      val r = rand.nextDouble() * sum
      var cumulativeScore = 0.0
      var j = 0
      while (j < points.length && cumulativeScore < r) {
        cumulativeScore += weights(j) * costArray(j)
        j += 1
      }
      if (j == 0) {
        logWarning("kMeansPlusPlus initialization ran out of distinct points for centers." +
          s" Using duplicate point for center k = $i.")
        centers(i) = points(0).toDense
      } else {
        centers(i) = points(j - 1).toDense
      }

      // update costArray
      for (p <- points.indices) {
        costArray(p) = math.min(
          EuclideanDistanceMeasure.fastSquaredDistance(points(p), centers(i)),
          costArray(p))
      }

    }

    val distanceMeasureInstance = new EuclideanDistanceMeasure

    // Run up to maxIterations iterations of Lloyd's algorithm
    val oldClosest = Array.fill(points.length)(-1)
    var iteration = 0
    var moved = true
    while (moved && iteration < maxIterations) {
      moved = false
      val counts = Array.ofDim[Double](k)
      val sums = Array.fill(k)(Vectors.zeros(dimensions))
      var i = 0
      while (i < points.length) {
        val p = points(i)
        val index = distanceMeasureInstance.findClosest(centers, p)._1
        axpy(weights(i), p.vector, sums(index))
        counts(index) += weights(i)
        if (index != oldClosest(i)) {
          moved = true
          oldClosest(i) = index
        }
        i += 1
      }
      // Update centers
      var j = 0
      while (j < k) {
        if (counts(j) == 0.0) {
          // Assign center to a random point
          centers(j) = points(rand.nextInt(points.length)).toDense
        } else {
          scal(1.0 / counts(j), sums(j))
          centers(j) = new VectorWithNorm(sums(j))
        }
        j += 1
      }
      iteration += 1
    }

    if (iteration == maxIterations) {
      logInfo(s"Local KMeans++ reached the max number of iterations: $maxIterations.")
    } else {
      logInfo(s"Local KMeans++ converged in $iteration iterations.")
    }

    centers
  }

  private def pickWeighted[T](rand: Random, data: Array[T], weights: Array[Double]): T = {
    val r = rand.nextDouble() * weights.sum
    var i = 0
    var curWeight = 0.0
    while (i < data.length && curWeight < r) {
      curWeight += weights(i)
      i += 1
    }
    data(i - 1)
  }
}

相关信息

spark 源码目录

相关文章

spark BisectingKMeans 源码

spark BisectingKMeansModel 源码

spark DistanceMeasure 源码

spark GaussianMixture 源码

spark GaussianMixtureModel 源码

spark KMeans 源码

spark KMeansModel 源码

spark LDA 源码

spark LDAModel 源码

spark LDAOptimizer 源码

0  赞