spark SQLHadoopMapReduceCommitProtocol 源码

  • 2022-10-20
  • 浏览 (246)

spark SQLHadoopMapReduceCommitProtocol 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/SQLHadoopMapReduceCommitProtocol.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.datasources

import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.{OutputCommitter, TaskAttemptContext}
import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter

import org.apache.spark.internal.Logging
import org.apache.spark.internal.io.HadoopMapReduceCommitProtocol
import org.apache.spark.sql.internal.SQLConf

/**
 * A variant of [[HadoopMapReduceCommitProtocol]] that allows specifying the actual
 * Hadoop output committer using an option specified in SQLConf.
 */
class SQLHadoopMapReduceCommitProtocol(
    jobId: String,
    path: String,
    dynamicPartitionOverwrite: Boolean = false)
  extends HadoopMapReduceCommitProtocol(jobId, path, dynamicPartitionOverwrite)
    with Serializable with Logging {

  override protected def setupCommitter(context: TaskAttemptContext): OutputCommitter = {
    var committer = super.setupCommitter(context)

    val configuration = context.getConfiguration
    val clazz =
      configuration.getClass(SQLConf.OUTPUT_COMMITTER_CLASS.key, null, classOf[OutputCommitter])

    if (clazz != null) {
      logInfo(s"Using user defined output committer class ${clazz.getCanonicalName}")

      // Every output format based on org.apache.hadoop.mapreduce.lib.output.OutputFormat
      // has an associated output committer. To override this output committer,
      // we will first try to use the output committer set in SQLConf.OUTPUT_COMMITTER_CLASS.
      // If a data source needs to override the output committer, it needs to set the
      // output committer in prepareForWrite method.
      if (classOf[FileOutputCommitter].isAssignableFrom(clazz)) {
        // The specified output committer is a FileOutputCommitter.
        // So, we will use the FileOutputCommitter-specified constructor.
        val ctor = clazz.getDeclaredConstructor(classOf[Path], classOf[TaskAttemptContext])
        val committerOutputPath = if (dynamicPartitionOverwrite) stagingDir else new Path(path)
        committer = ctor.newInstance(committerOutputPath, context)
      } else {
        // The specified output committer is just an OutputCommitter.
        // So, we will use the no-argument constructor.
        val ctor = clazz.getDeclaredConstructor()
        committer = ctor.newInstance()
      }
    }
    logInfo(s"Using output committer class ${committer.getClass.getCanonicalName}")
    committer
  }
}

相关信息

spark 源码目录

相关文章

spark AggregatePushDownUtils 源码

spark ApplyCharTypePadding 源码

spark BasicWriteStatsTracker 源码

spark BucketingUtils 源码

spark CatalogFileIndex 源码

spark CodecStreams 源码

spark DataSource 源码

spark DataSourceStrategy 源码

spark DataSourceUtils 源码

spark DaysWritable 源码

0  赞