go builtin 源码

  • 2022-07-15
  • 浏览 (508)

golang builtin 代码

文件路径:/src/cmd/compile/internal/walk/builtin.go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package walk

import (
	"fmt"
	"go/constant"
	"go/token"
	"strings"

	"cmd/compile/internal/base"
	"cmd/compile/internal/escape"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
)

// Rewrite append(src, x, y, z) so that any side effects in
// x, y, z (including runtime panics) are evaluated in
// initialization statements before the append.
// For normal code generation, stop there and leave the
// rest to cgen_append.
//
// For race detector, expand append(src, a [, b]* ) to
//
//	  init {
//	    s := src
//	    const argc = len(args) - 1
//	    if cap(s) - len(s) < argc {
//		    s = growslice(s, len(s)+argc)
//	    }
//	    n := len(s)
//	    s = s[:n+argc]
//	    s[n] = a
//	    s[n+1] = b
//	    ...
//	  }
//	  s
func walkAppend(n *ir.CallExpr, init *ir.Nodes, dst ir.Node) ir.Node {
	if !ir.SameSafeExpr(dst, n.Args[0]) {
		n.Args[0] = safeExpr(n.Args[0], init)
		n.Args[0] = walkExpr(n.Args[0], init)
	}
	walkExprListSafe(n.Args[1:], init)

	nsrc := n.Args[0]

	// walkExprListSafe will leave OINDEX (s[n]) alone if both s
	// and n are name or literal, but those may index the slice we're
	// modifying here. Fix explicitly.
	// Using cheapExpr also makes sure that the evaluation
	// of all arguments (and especially any panics) happen
	// before we begin to modify the slice in a visible way.
	ls := n.Args[1:]
	for i, n := range ls {
		n = cheapExpr(n, init)
		if !types.Identical(n.Type(), nsrc.Type().Elem()) {
			n = typecheck.AssignConv(n, nsrc.Type().Elem(), "append")
			n = walkExpr(n, init)
		}
		ls[i] = n
	}

	argc := len(n.Args) - 1
	if argc < 1 {
		return nsrc
	}

	// General case, with no function calls left as arguments.
	// Leave for gen, except that instrumentation requires old form.
	if !base.Flag.Cfg.Instrumenting || base.Flag.CompilingRuntime {
		return n
	}

	var l []ir.Node

	ns := typecheck.Temp(nsrc.Type())
	l = append(l, ir.NewAssignStmt(base.Pos, ns, nsrc)) // s = src

	na := ir.NewInt(int64(argc))                 // const argc
	nif := ir.NewIfStmt(base.Pos, nil, nil, nil) // if cap(s) - len(s) < argc
	nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OCAP, ns), ir.NewUnaryExpr(base.Pos, ir.OLEN, ns)), na)

	fn := typecheck.LookupRuntime("growslice") //   growslice(<type>, old []T, mincap int) (ret []T)
	fn = typecheck.SubstArgTypes(fn, ns.Type().Elem(), ns.Type().Elem())

	nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, ns, mkcall1(fn, ns.Type(), nif.PtrInit(), reflectdata.TypePtr(ns.Type().Elem()), ns,
		ir.NewBinaryExpr(base.Pos, ir.OADD, ir.NewUnaryExpr(base.Pos, ir.OLEN, ns), na)))}

	l = append(l, nif)

	nn := typecheck.Temp(types.Types[types.TINT])
	l = append(l, ir.NewAssignStmt(base.Pos, nn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ns))) // n = len(s)

	slice := ir.NewSliceExpr(base.Pos, ir.OSLICE, ns, nil, ir.NewBinaryExpr(base.Pos, ir.OADD, nn, na), nil) // ...s[:n+argc]
	slice.SetBounded(true)
	l = append(l, ir.NewAssignStmt(base.Pos, ns, slice)) // s = s[:n+argc]

	ls = n.Args[1:]
	for i, n := range ls {
		ix := ir.NewIndexExpr(base.Pos, ns, nn) // s[n] ...
		ix.SetBounded(true)
		l = append(l, ir.NewAssignStmt(base.Pos, ix, n)) // s[n] = arg
		if i+1 < len(ls) {
			l = append(l, ir.NewAssignStmt(base.Pos, nn, ir.NewBinaryExpr(base.Pos, ir.OADD, nn, ir.NewInt(1)))) // n = n + 1
		}
	}

	typecheck.Stmts(l)
	walkStmtList(l)
	init.Append(l...)
	return ns
}

// walkClose walks an OCLOSE node.
func walkClose(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
	// cannot use chanfn - closechan takes any, not chan any
	fn := typecheck.LookupRuntime("closechan")
	fn = typecheck.SubstArgTypes(fn, n.X.Type())
	return mkcall1(fn, nil, init, n.X)
}

// Lower copy(a, b) to a memmove call or a runtime call.
//
//	init {
//	  n := len(a)
//	  if n > len(b) { n = len(b) }
//	  if a.ptr != b.ptr { memmove(a.ptr, b.ptr, n*sizeof(elem(a))) }
//	}
//	n;
//
// Also works if b is a string.
func walkCopy(n *ir.BinaryExpr, init *ir.Nodes, runtimecall bool) ir.Node {
	if n.X.Type().Elem().HasPointers() {
		ir.CurFunc.SetWBPos(n.Pos())
		fn := writebarrierfn("typedslicecopy", n.X.Type().Elem(), n.Y.Type().Elem())
		n.X = cheapExpr(n.X, init)
		ptrL, lenL := backingArrayPtrLen(n.X)
		n.Y = cheapExpr(n.Y, init)
		ptrR, lenR := backingArrayPtrLen(n.Y)
		return mkcall1(fn, n.Type(), init, reflectdata.TypePtr(n.X.Type().Elem()), ptrL, lenL, ptrR, lenR)
	}

	if runtimecall {
		// rely on runtime to instrument:
		//  copy(n.Left, n.Right)
		// n.Right can be a slice or string.

		n.X = cheapExpr(n.X, init)
		ptrL, lenL := backingArrayPtrLen(n.X)
		n.Y = cheapExpr(n.Y, init)
		ptrR, lenR := backingArrayPtrLen(n.Y)

		fn := typecheck.LookupRuntime("slicecopy")
		fn = typecheck.SubstArgTypes(fn, ptrL.Type().Elem(), ptrR.Type().Elem())

		return mkcall1(fn, n.Type(), init, ptrL, lenL, ptrR, lenR, ir.NewInt(n.X.Type().Elem().Size()))
	}

	n.X = walkExpr(n.X, init)
	n.Y = walkExpr(n.Y, init)
	nl := typecheck.Temp(n.X.Type())
	nr := typecheck.Temp(n.Y.Type())
	var l []ir.Node
	l = append(l, ir.NewAssignStmt(base.Pos, nl, n.X))
	l = append(l, ir.NewAssignStmt(base.Pos, nr, n.Y))

	nfrm := ir.NewUnaryExpr(base.Pos, ir.OSPTR, nr)
	nto := ir.NewUnaryExpr(base.Pos, ir.OSPTR, nl)

	nlen := typecheck.Temp(types.Types[types.TINT])

	// n = len(to)
	l = append(l, ir.NewAssignStmt(base.Pos, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nl)))

	// if n > len(frm) { n = len(frm) }
	nif := ir.NewIfStmt(base.Pos, nil, nil, nil)

	nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OGT, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nr))
	nif.Body.Append(ir.NewAssignStmt(base.Pos, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nr)))
	l = append(l, nif)

	// if to.ptr != frm.ptr { memmove( ... ) }
	ne := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.ONE, nto, nfrm), nil, nil)
	ne.Likely = true
	l = append(l, ne)

	fn := typecheck.LookupRuntime("memmove")
	fn = typecheck.SubstArgTypes(fn, nl.Type().Elem(), nl.Type().Elem())
	nwid := ir.Node(typecheck.Temp(types.Types[types.TUINTPTR]))
	setwid := ir.NewAssignStmt(base.Pos, nwid, typecheck.Conv(nlen, types.Types[types.TUINTPTR]))
	ne.Body.Append(setwid)
	nwid = ir.NewBinaryExpr(base.Pos, ir.OMUL, nwid, ir.NewInt(nl.Type().Elem().Size()))
	call := mkcall1(fn, nil, init, nto, nfrm, nwid)
	ne.Body.Append(call)

	typecheck.Stmts(l)
	walkStmtList(l)
	init.Append(l...)
	return nlen
}

// walkDelete walks an ODELETE node.
func walkDelete(init *ir.Nodes, n *ir.CallExpr) ir.Node {
	init.Append(ir.TakeInit(n)...)
	map_ := n.Args[0]
	key := n.Args[1]
	map_ = walkExpr(map_, init)
	key = walkExpr(key, init)

	t := map_.Type()
	fast := mapfast(t)
	key = mapKeyArg(fast, n, key, false)
	return mkcall1(mapfndel(mapdelete[fast], t), nil, init, reflectdata.TypePtr(t), map_, key)
}

// walkLenCap walks an OLEN or OCAP node.
func walkLenCap(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
	if isRuneCount(n) {
		// Replace len([]rune(string)) with runtime.countrunes(string).
		return mkcall("countrunes", n.Type(), init, typecheck.Conv(n.X.(*ir.ConvExpr).X, types.Types[types.TSTRING]))
	}

	n.X = walkExpr(n.X, init)

	// replace len(*[10]int) with 10.
	// delayed until now to preserve side effects.
	t := n.X.Type()

	if t.IsPtr() {
		t = t.Elem()
	}
	if t.IsArray() {
		safeExpr(n.X, init)
		con := typecheck.OrigInt(n, t.NumElem())
		con.SetTypecheck(1)
		return con
	}
	return n
}

// walkMakeChan walks an OMAKECHAN node.
func walkMakeChan(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
	// When size fits into int, use makechan instead of
	// makechan64, which is faster and shorter on 32 bit platforms.
	size := n.Len
	fnname := "makechan64"
	argtype := types.Types[types.TINT64]

	// Type checking guarantees that TIDEAL size is positive and fits in an int.
	// The case of size overflow when converting TUINT or TUINTPTR to TINT
	// will be handled by the negative range checks in makechan during runtime.
	if size.Type().IsKind(types.TIDEAL) || size.Type().Size() <= types.Types[types.TUINT].Size() {
		fnname = "makechan"
		argtype = types.Types[types.TINT]
	}

	return mkcall1(chanfn(fnname, 1, n.Type()), n.Type(), init, reflectdata.TypePtr(n.Type()), typecheck.Conv(size, argtype))
}

// walkMakeMap walks an OMAKEMAP node.
func walkMakeMap(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
	t := n.Type()
	hmapType := reflectdata.MapType(t)
	hint := n.Len

	// var h *hmap
	var h ir.Node
	if n.Esc() == ir.EscNone {
		// Allocate hmap on stack.

		// var hv hmap
		// h = &hv
		h = stackTempAddr(init, hmapType)

		// Allocate one bucket pointed to by hmap.buckets on stack if hint
		// is not larger than BUCKETSIZE. In case hint is larger than
		// BUCKETSIZE runtime.makemap will allocate the buckets on the heap.
		// Maximum key and elem size is 128 bytes, larger objects
		// are stored with an indirection. So max bucket size is 2048+eps.
		if !ir.IsConst(hint, constant.Int) ||
			constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(reflectdata.BUCKETSIZE)) {

			// In case hint is larger than BUCKETSIZE runtime.makemap
			// will allocate the buckets on the heap, see #20184
			//
			// if hint <= BUCKETSIZE {
			//     var bv bmap
			//     b = &bv
			//     h.buckets = b
			// }

			nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLE, hint, ir.NewInt(reflectdata.BUCKETSIZE)), nil, nil)
			nif.Likely = true

			// var bv bmap
			// b = &bv
			b := stackTempAddr(&nif.Body, reflectdata.MapBucketType(t))

			// h.buckets = b
			bsym := hmapType.Field(5).Sym // hmap.buckets see reflect.go:hmap
			na := ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, h, bsym), b)
			nif.Body.Append(na)
			appendWalkStmt(init, nif)
		}
	}

	if ir.IsConst(hint, constant.Int) && constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(reflectdata.BUCKETSIZE)) {
		// Handling make(map[any]any) and
		// make(map[any]any, hint) where hint <= BUCKETSIZE
		// special allows for faster map initialization and
		// improves binary size by using calls with fewer arguments.
		// For hint <= BUCKETSIZE overLoadFactor(hint, 0) is false
		// and no buckets will be allocated by makemap. Therefore,
		// no buckets need to be allocated in this code path.
		if n.Esc() == ir.EscNone {
			// Only need to initialize h.hash0 since
			// hmap h has been allocated on the stack already.
			// h.hash0 = fastrand()
			rand := mkcall("fastrand", types.Types[types.TUINT32], init)
			hashsym := hmapType.Field(4).Sym // hmap.hash0 see reflect.go:hmap
			appendWalkStmt(init, ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, h, hashsym), rand))
			return typecheck.ConvNop(h, t)
		}
		// Call runtime.makehmap to allocate an
		// hmap on the heap and initialize hmap's hash0 field.
		fn := typecheck.LookupRuntime("makemap_small")
		fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem())
		return mkcall1(fn, n.Type(), init)
	}

	if n.Esc() != ir.EscNone {
		h = typecheck.NodNil()
	}
	// Map initialization with a variable or large hint is
	// more complicated. We therefore generate a call to
	// runtime.makemap to initialize hmap and allocate the
	// map buckets.

	// When hint fits into int, use makemap instead of
	// makemap64, which is faster and shorter on 32 bit platforms.
	fnname := "makemap64"
	argtype := types.Types[types.TINT64]

	// Type checking guarantees that TIDEAL hint is positive and fits in an int.
	// See checkmake call in TMAP case of OMAKE case in OpSwitch in typecheck1 function.
	// The case of hint overflow when converting TUINT or TUINTPTR to TINT
	// will be handled by the negative range checks in makemap during runtime.
	if hint.Type().IsKind(types.TIDEAL) || hint.Type().Size() <= types.Types[types.TUINT].Size() {
		fnname = "makemap"
		argtype = types.Types[types.TINT]
	}

	fn := typecheck.LookupRuntime(fnname)
	fn = typecheck.SubstArgTypes(fn, hmapType, t.Key(), t.Elem())
	return mkcall1(fn, n.Type(), init, reflectdata.TypePtr(n.Type()), typecheck.Conv(hint, argtype), h)
}

// walkMakeSlice walks an OMAKESLICE node.
func walkMakeSlice(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
	l := n.Len
	r := n.Cap
	if r == nil {
		r = safeExpr(l, init)
		l = r
	}
	t := n.Type()
	if t.Elem().NotInHeap() {
		base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem())
	}
	if n.Esc() == ir.EscNone {
		if why := escape.HeapAllocReason(n); why != "" {
			base.Fatalf("%v has EscNone, but %v", n, why)
		}
		// var arr [r]T
		// n = arr[:l]
		i := typecheck.IndexConst(r)
		if i < 0 {
			base.Fatalf("walkExpr: invalid index %v", r)
		}

		// cap is constrained to [0,2^31) or [0,2^63) depending on whether
		// we're in 32-bit or 64-bit systems. So it's safe to do:
		//
		// if uint64(len) > cap {
		//     if len < 0 { panicmakeslicelen() }
		//     panicmakeslicecap()
		// }
		nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(l, types.Types[types.TUINT64]), ir.NewInt(i)), nil, nil)
		niflen := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLT, l, ir.NewInt(0)), nil, nil)
		niflen.Body = []ir.Node{mkcall("panicmakeslicelen", nil, init)}
		nif.Body.Append(niflen, mkcall("panicmakeslicecap", nil, init))
		init.Append(typecheck.Stmt(nif))

		t = types.NewArray(t.Elem(), i) // [r]T
		var_ := typecheck.Temp(t)
		appendWalkStmt(init, ir.NewAssignStmt(base.Pos, var_, nil))  // zero temp
		r := ir.NewSliceExpr(base.Pos, ir.OSLICE, var_, nil, l, nil) // arr[:l]
		// The conv is necessary in case n.Type is named.
		return walkExpr(typecheck.Expr(typecheck.Conv(r, n.Type())), init)
	}

	// n escapes; set up a call to makeslice.
	// When len and cap can fit into int, use makeslice instead of
	// makeslice64, which is faster and shorter on 32 bit platforms.

	len, cap := l, r

	fnname := "makeslice64"
	argtype := types.Types[types.TINT64]

	// Type checking guarantees that TIDEAL len/cap are positive and fit in an int.
	// The case of len or cap overflow when converting TUINT or TUINTPTR to TINT
	// will be handled by the negative range checks in makeslice during runtime.
	if (len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size()) &&
		(cap.Type().IsKind(types.TIDEAL) || cap.Type().Size() <= types.Types[types.TUINT].Size()) {
		fnname = "makeslice"
		argtype = types.Types[types.TINT]
	}
	fn := typecheck.LookupRuntime(fnname)
	ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.TypePtr(t.Elem()), typecheck.Conv(len, argtype), typecheck.Conv(cap, argtype))
	ptr.MarkNonNil()
	len = typecheck.Conv(len, types.Types[types.TINT])
	cap = typecheck.Conv(cap, types.Types[types.TINT])
	sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, len, cap)
	return walkExpr(typecheck.Expr(sh), init)
}

// walkMakeSliceCopy walks an OMAKESLICECOPY node.
func walkMakeSliceCopy(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
	if n.Esc() == ir.EscNone {
		base.Fatalf("OMAKESLICECOPY with EscNone: %v", n)
	}

	t := n.Type()
	if t.Elem().NotInHeap() {
		base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem())
	}

	length := typecheck.Conv(n.Len, types.Types[types.TINT])
	copylen := ir.NewUnaryExpr(base.Pos, ir.OLEN, n.Cap)
	copyptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, n.Cap)

	if !t.Elem().HasPointers() && n.Bounded() {
		// When len(to)==len(from) and elements have no pointers:
		// replace make+copy with runtime.mallocgc+runtime.memmove.

		// We do not check for overflow of len(to)*elem.Width here
		// since len(from) is an existing checked slice capacity
		// with same elem.Width for the from slice.
		size := ir.NewBinaryExpr(base.Pos, ir.OMUL, typecheck.Conv(length, types.Types[types.TUINTPTR]), typecheck.Conv(ir.NewInt(t.Elem().Size()), types.Types[types.TUINTPTR]))

		// instantiate mallocgc(size uintptr, typ *byte, needszero bool) unsafe.Pointer
		fn := typecheck.LookupRuntime("mallocgc")
		ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, size, typecheck.NodNil(), ir.NewBool(false))
		ptr.MarkNonNil()
		sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, length, length)

		s := typecheck.Temp(t)
		r := typecheck.Stmt(ir.NewAssignStmt(base.Pos, s, sh))
		r = walkExpr(r, init)
		init.Append(r)

		// instantiate memmove(to *any, frm *any, size uintptr)
		fn = typecheck.LookupRuntime("memmove")
		fn = typecheck.SubstArgTypes(fn, t.Elem(), t.Elem())
		ncopy := mkcall1(fn, nil, init, ir.NewUnaryExpr(base.Pos, ir.OSPTR, s), copyptr, size)
		init.Append(walkExpr(typecheck.Stmt(ncopy), init))

		return s
	}
	// Replace make+copy with runtime.makeslicecopy.
	// instantiate makeslicecopy(typ *byte, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer
	fn := typecheck.LookupRuntime("makeslicecopy")
	ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.TypePtr(t.Elem()), length, copylen, typecheck.Conv(copyptr, types.Types[types.TUNSAFEPTR]))
	ptr.MarkNonNil()
	sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, length, length)
	return walkExpr(typecheck.Expr(sh), init)
}

// walkNew walks an ONEW node.
func walkNew(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
	t := n.Type().Elem()
	if t.NotInHeap() {
		base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", n.Type().Elem())
	}
	if n.Esc() == ir.EscNone {
		if t.Size() > ir.MaxImplicitStackVarSize {
			base.Fatalf("large ONEW with EscNone: %v", n)
		}
		return stackTempAddr(init, t)
	}
	types.CalcSize(t)
	n.MarkNonNil()
	return n
}

// generate code for print
func walkPrint(nn *ir.CallExpr, init *ir.Nodes) ir.Node {
	// Hoist all the argument evaluation up before the lock.
	walkExprListCheap(nn.Args, init)

	// For println, add " " between elements and "\n" at the end.
	if nn.Op() == ir.OPRINTN {
		s := nn.Args
		t := make([]ir.Node, 0, len(s)*2)
		for i, n := range s {
			if i != 0 {
				t = append(t, ir.NewString(" "))
			}
			t = append(t, n)
		}
		t = append(t, ir.NewString("\n"))
		nn.Args = t
	}

	// Collapse runs of constant strings.
	s := nn.Args
	t := make([]ir.Node, 0, len(s))
	for i := 0; i < len(s); {
		var strs []string
		for i < len(s) && ir.IsConst(s[i], constant.String) {
			strs = append(strs, ir.StringVal(s[i]))
			i++
		}
		if len(strs) > 0 {
			t = append(t, ir.NewString(strings.Join(strs, "")))
		}
		if i < len(s) {
			t = append(t, s[i])
			i++
		}
	}
	nn.Args = t

	calls := []ir.Node{mkcall("printlock", nil, init)}
	for i, n := range nn.Args {
		if n.Op() == ir.OLITERAL {
			if n.Type() == types.UntypedRune {
				n = typecheck.DefaultLit(n, types.RuneType)
			}

			switch n.Val().Kind() {
			case constant.Int:
				n = typecheck.DefaultLit(n, types.Types[types.TINT64])

			case constant.Float:
				n = typecheck.DefaultLit(n, types.Types[types.TFLOAT64])
			}
		}

		if n.Op() != ir.OLITERAL && n.Type() != nil && n.Type().Kind() == types.TIDEAL {
			n = typecheck.DefaultLit(n, types.Types[types.TINT64])
		}
		n = typecheck.DefaultLit(n, nil)
		nn.Args[i] = n
		if n.Type() == nil || n.Type().Kind() == types.TFORW {
			continue
		}

		var on *ir.Name
		switch n.Type().Kind() {
		case types.TINTER:
			if n.Type().IsEmptyInterface() {
				on = typecheck.LookupRuntime("printeface")
			} else {
				on = typecheck.LookupRuntime("printiface")
			}
			on = typecheck.SubstArgTypes(on, n.Type()) // any-1
		case types.TPTR:
			if n.Type().Elem().NotInHeap() {
				on = typecheck.LookupRuntime("printuintptr")
				n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
				n.SetType(types.Types[types.TUNSAFEPTR])
				n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
				n.SetType(types.Types[types.TUINTPTR])
				break
			}
			fallthrough
		case types.TCHAN, types.TMAP, types.TFUNC, types.TUNSAFEPTR:
			on = typecheck.LookupRuntime("printpointer")
			on = typecheck.SubstArgTypes(on, n.Type()) // any-1
		case types.TSLICE:
			on = typecheck.LookupRuntime("printslice")
			on = typecheck.SubstArgTypes(on, n.Type()) // any-1
		case types.TUINT, types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64, types.TUINTPTR:
			if types.IsRuntimePkg(n.Type().Sym().Pkg) && n.Type().Sym().Name == "hex" {
				on = typecheck.LookupRuntime("printhex")
			} else {
				on = typecheck.LookupRuntime("printuint")
			}
		case types.TINT, types.TINT8, types.TINT16, types.TINT32, types.TINT64:
			on = typecheck.LookupRuntime("printint")
		case types.TFLOAT32, types.TFLOAT64:
			on = typecheck.LookupRuntime("printfloat")
		case types.TCOMPLEX64, types.TCOMPLEX128:
			on = typecheck.LookupRuntime("printcomplex")
		case types.TBOOL:
			on = typecheck.LookupRuntime("printbool")
		case types.TSTRING:
			cs := ""
			if ir.IsConst(n, constant.String) {
				cs = ir.StringVal(n)
			}
			switch cs {
			case " ":
				on = typecheck.LookupRuntime("printsp")
			case "\n":
				on = typecheck.LookupRuntime("printnl")
			default:
				on = typecheck.LookupRuntime("printstring")
			}
		default:
			badtype(ir.OPRINT, n.Type(), nil)
			continue
		}

		r := ir.NewCallExpr(base.Pos, ir.OCALL, on, nil)
		if params := on.Type().Params().FieldSlice(); len(params) > 0 {
			t := params[0].Type
			n = typecheck.Conv(n, t)
			r.Args.Append(n)
		}
		calls = append(calls, r)
	}

	calls = append(calls, mkcall("printunlock", nil, init))

	typecheck.Stmts(calls)
	walkExprList(calls, init)

	r := ir.NewBlockStmt(base.Pos, nil)
	r.List = calls
	return walkStmt(typecheck.Stmt(r))
}

// walkRecover walks an ORECOVERFP node.
func walkRecoverFP(nn *ir.CallExpr, init *ir.Nodes) ir.Node {
	return mkcall("gorecover", nn.Type(), init, walkExpr(nn.Args[0], init))
}

func walkUnsafeSlice(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
	ptr := safeExpr(n.X, init)
	len := safeExpr(n.Y, init)
	sliceType := n.Type()

	lenType := types.Types[types.TINT64]
	unsafePtr := typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR])

	// If checkptr enabled, call runtime.unsafeslicecheckptr to check ptr and len.
	// for simplicity, unsafeslicecheckptr always uses int64.
	// Type checking guarantees that TIDEAL len/cap are positive and fit in an int.
	// The case of len or cap overflow when converting TUINT or TUINTPTR to TINT
	// will be handled by the negative range checks in unsafeslice during runtime.
	if ir.ShouldCheckPtr(ir.CurFunc, 1) {
		fnname := "unsafeslicecheckptr"
		fn := typecheck.LookupRuntime(fnname)
		init.Append(mkcall1(fn, nil, init, reflectdata.TypePtr(sliceType.Elem()), unsafePtr, typecheck.Conv(len, lenType)))
	} else {
		// Otherwise, open code unsafe.Slice to prevent runtime call overhead.
		// Keep this code in sync with runtime.unsafeslice{,64}
		if len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size() {
			lenType = types.Types[types.TINT]
		} else {
			// len64 := int64(len)
			// if int64(int(len64)) != len64 {
			//     panicunsafeslicelen()
			// }
			len64 := typecheck.Conv(len, lenType)
			nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
			nif.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, typecheck.Conv(typecheck.Conv(len64, types.Types[types.TINT]), lenType), len64)
			nif.Body.Append(mkcall("panicunsafeslicelen", nil, &nif.Body))
			appendWalkStmt(init, nif)
		}

		// if len < 0 { panicunsafeslicelen() }
		nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
		nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, typecheck.Conv(len, lenType), ir.NewInt(0))
		nif.Body.Append(mkcall("panicunsafeslicelen", nil, &nif.Body))
		appendWalkStmt(init, nif)

		// mem, overflow := runtime.mulUintptr(et.size, len)
		mem := typecheck.Temp(types.Types[types.TUINTPTR])
		overflow := typecheck.Temp(types.Types[types.TBOOL])
		fn := typecheck.LookupRuntime("mulUintptr")
		call := mkcall1(fn, fn.Type().Results(), init, ir.NewInt(sliceType.Elem().Size()), typecheck.Conv(typecheck.Conv(len, lenType), types.Types[types.TUINTPTR]))
		appendWalkStmt(init, ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{mem, overflow}, []ir.Node{call}))

		// if overflow || mem > -uintptr(ptr) {
		//     if ptr == nil {
		//         panicunsafesliceptrnil()
		//     }
		//     panicunsafeslicelen()
		// }
		nif = ir.NewIfStmt(base.Pos, nil, nil, nil)
		memCond := ir.NewBinaryExpr(base.Pos, ir.OGT, mem, ir.NewUnaryExpr(base.Pos, ir.ONEG, typecheck.Conv(unsafePtr, types.Types[types.TUINTPTR])))
		nif.Cond = ir.NewLogicalExpr(base.Pos, ir.OOROR, overflow, memCond)
		nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
		nifPtr.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
		nifPtr.Body.Append(mkcall("panicunsafeslicenilptr", nil, &nifPtr.Body))
		nif.Body.Append(nifPtr, mkcall("panicunsafeslicelen", nil, &nif.Body))
		appendWalkStmt(init, nif)
	}

	h := ir.NewSliceHeaderExpr(n.Pos(), sliceType,
		typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
		typecheck.Conv(len, types.Types[types.TINT]),
		typecheck.Conv(len, types.Types[types.TINT]))
	return walkExpr(typecheck.Expr(h), init)
}

func badtype(op ir.Op, tl, tr *types.Type) {
	var s string
	if tl != nil {
		s += fmt.Sprintf("\n\t%v", tl)
	}
	if tr != nil {
		s += fmt.Sprintf("\n\t%v", tr)
	}

	// common mistake: *struct and *interface.
	if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
		if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
			s += "\n\t(*struct vs *interface)"
		} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
			s += "\n\t(*interface vs *struct)"
		}
	}

	base.Errorf("illegal types for operand: %v%s", op, s)
}

func writebarrierfn(name string, l *types.Type, r *types.Type) ir.Node {
	fn := typecheck.LookupRuntime(name)
	fn = typecheck.SubstArgTypes(fn, l, r)
	return fn
}

// isRuneCount reports whether n is of the form len([]rune(string)).
// These are optimized into a call to runtime.countrunes.
func isRuneCount(n ir.Node) bool {
	return base.Flag.N == 0 && !base.Flag.Cfg.Instrumenting && n.Op() == ir.OLEN && n.(*ir.UnaryExpr).X.Op() == ir.OSTR2RUNES
}

相关信息

go 源码目录

相关文章

go assign 源码

go closure 源码

go compare 源码

go complit 源码

go convert 源码

go expr 源码

go order 源码

go race 源码

go range 源码

go select 源码