greenplumn crosstabview 源码

  • 2022-08-18
  • 浏览 (345)

greenplumn crosstabview 代码

文件路径:/src/bin/psql/crosstabview.c

/*
 * psql - the PostgreSQL interactive terminal
 *
 * Copyright (c) 2000-2019, PostgreSQL Global Development Group
 *
 * src/bin/psql/crosstabview.c
 */
#include "postgres_fe.h"

#include "common.h"
#include "crosstabview.h"
#include "pqexpbuffer.h"
#include "psqlscanslash.h"
#include "settings.h"

#include "common/logging.h"

/*
 * Value/position from the resultset that goes into the horizontal or vertical
 * crosstabview header.
 */
typedef struct _pivot_field
{
	/*
	 * Pointer obtained from PQgetvalue() for colV or colH. Each distinct
	 * value becomes an entry in the vertical header (colV), or horizontal
	 * header (colH). A Null value is represented by a NULL pointer.
	 */
	char	   *name;

	/*
	 * When a sort is requested on an alternative column, this holds
	 * PQgetvalue() for the sort column corresponding to <name>. If <name>
	 * appear multiple times, it's the first value in the order of the results
	 * that is kept. A Null value is represented by a NULL pointer.
	 */
	char	   *sort_value;

	/*
	 * Rank of this value, starting at 0. Initially, it's the relative
	 * position of the first appearance of <name> in the resultset. For
	 * example, if successive rows contain B,A,C,A,D then it's B:0,A:1,C:2,D:3
	 * When a sort column is specified, ranks get updated in a final pass to
	 * reflect the desired order.
	 */
	int			rank;
} pivot_field;

/* Node in avl_tree */
typedef struct _avl_node
{
	/* Node contents */
	pivot_field field;

	/*
	 * Height of this node in the tree (number of nodes on the longest path to
	 * a leaf).
	 */
	int			height;

	/*
	 * Child nodes. [0] points to left subtree, [1] to right subtree. Never
	 * NULL, points to the empty node avl_tree.end when no left or right
	 * value.
	 */
	struct _avl_node *children[2];
} avl_node;

/*
 * Control structure for the AVL tree (binary search tree kept
 * balanced with the AVL algorithm)
 */
typedef struct _avl_tree
{
	int			count;			/* Total number of nodes */
	avl_node   *root;			/* root of the tree */
	avl_node   *end;			/* Immutable dereferenceable empty tree */
} avl_tree;


static bool printCrosstab(const PGresult *results,
						  int num_columns, pivot_field *piv_columns, int field_for_columns,
						  int num_rows, pivot_field *piv_rows, int field_for_rows,
						  int field_for_data);
static void avlInit(avl_tree *tree);
static void avlMergeValue(avl_tree *tree, char *name, char *sort_value);
static int	avlCollectFields(avl_tree *tree, avl_node *node,
							 pivot_field *fields, int idx);
static void avlFree(avl_tree *tree, avl_node *node);
static void rankSort(int num_columns, pivot_field *piv_columns);
static int	indexOfColumn(char *arg, const PGresult *res);
static int	pivotFieldCompare(const void *a, const void *b);
static int	rankCompare(const void *a, const void *b);


/*
 * Main entry point to this module.
 *
 * Process the data from *res according to the options in pset (global),
 * to generate the horizontal and vertical headers contents,
 * then call printCrosstab() for the actual output.
 */
bool
PrintResultsInCrosstab(const PGresult *res)
{
	bool		retval = false;
	avl_tree	piv_columns;
	avl_tree	piv_rows;
	pivot_field *array_columns = NULL;
	pivot_field *array_rows = NULL;
	int			num_columns = 0;
	int			num_rows = 0;
	int			field_for_rows;
	int			field_for_columns;
	int			field_for_data;
	int			sort_field_for_columns;
	int			rn;

	avlInit(&piv_rows);
	avlInit(&piv_columns);

	if (PQresultStatus(res) != PGRES_TUPLES_OK)
	{
		pg_log_error("\\crosstabview: statement did not return a result set");
		goto error_return;
	}

	if (PQnfields(res) < 3)
	{
		pg_log_error("\\crosstabview: query must return at least three columns");
		goto error_return;
	}

	/* Process first optional arg (vertical header column) */
	if (pset.ctv_args[0] == NULL)
		field_for_rows = 0;
	else
	{
		field_for_rows = indexOfColumn(pset.ctv_args[0], res);
		if (field_for_rows < 0)
			goto error_return;
	}

	/* Process second optional arg (horizontal header column) */
	if (pset.ctv_args[1] == NULL)
		field_for_columns = 1;
	else
	{
		field_for_columns = indexOfColumn(pset.ctv_args[1], res);
		if (field_for_columns < 0)
			goto error_return;
	}

	/* Insist that header columns be distinct */
	if (field_for_columns == field_for_rows)
	{
		pg_log_error("\\crosstabview: vertical and horizontal headers must be different columns");
		goto error_return;
	}

	/* Process third optional arg (data column) */
	if (pset.ctv_args[2] == NULL)
	{
		int			i;

		/*
		 * If the data column was not specified, we search for the one not
		 * used as either vertical or horizontal headers.  Must be exactly
		 * three columns, or this won't be unique.
		 */
		if (PQnfields(res) != 3)
		{
			pg_log_error("\\crosstabview: data column must be specified when query returns more than three columns");
			goto error_return;
		}

		field_for_data = -1;
		for (i = 0; i < PQnfields(res); i++)
		{
			if (i != field_for_rows && i != field_for_columns)
			{
				field_for_data = i;
				break;
			}
		}
		Assert(field_for_data >= 0);
	}
	else
	{
		field_for_data = indexOfColumn(pset.ctv_args[2], res);
		if (field_for_data < 0)
			goto error_return;
	}

	/* Process fourth optional arg (horizontal header sort column) */
	if (pset.ctv_args[3] == NULL)
		sort_field_for_columns = -1;	/* no sort column */
	else
	{
		sort_field_for_columns = indexOfColumn(pset.ctv_args[3], res);
		if (sort_field_for_columns < 0)
			goto error_return;
	}

	/*
	 * First part: accumulate the names that go into the vertical and
	 * horizontal headers, each into an AVL binary tree to build the set of
	 * DISTINCT values.
	 */

	for (rn = 0; rn < PQntuples(res); rn++)
	{
		char	   *val;
		char	   *val1;

		/* horizontal */
		val = PQgetisnull(res, rn, field_for_columns) ? NULL :
			PQgetvalue(res, rn, field_for_columns);
		val1 = NULL;

		if (sort_field_for_columns >= 0 &&
			!PQgetisnull(res, rn, sort_field_for_columns))
			val1 = PQgetvalue(res, rn, sort_field_for_columns);

		avlMergeValue(&piv_columns, val, val1);

		if (piv_columns.count > CROSSTABVIEW_MAX_COLUMNS)
		{
			pg_log_error("\\crosstabview: maximum number of columns (%d) exceeded",
						 CROSSTABVIEW_MAX_COLUMNS);
			goto error_return;
		}

		/* vertical */
		val = PQgetisnull(res, rn, field_for_rows) ? NULL :
			PQgetvalue(res, rn, field_for_rows);

		avlMergeValue(&piv_rows, val, NULL);
	}

	/*
	 * Second part: Generate sorted arrays from the AVL trees.
	 */

	num_columns = piv_columns.count;
	num_rows = piv_rows.count;

	array_columns = (pivot_field *)
		pg_malloc(sizeof(pivot_field) * num_columns);

	array_rows = (pivot_field *)
		pg_malloc(sizeof(pivot_field) * num_rows);

	avlCollectFields(&piv_columns, piv_columns.root, array_columns, 0);
	avlCollectFields(&piv_rows, piv_rows.root, array_rows, 0);

	/*
	 * Third part: optionally, process the ranking data for the horizontal
	 * header
	 */
	if (sort_field_for_columns >= 0)
		rankSort(num_columns, array_columns);

	/*
	 * Fourth part: print the crosstab'ed results.
	 */
	retval = printCrosstab(res,
						   num_columns, array_columns, field_for_columns,
						   num_rows, array_rows, field_for_rows,
						   field_for_data);

error_return:
	avlFree(&piv_columns, piv_columns.root);
	avlFree(&piv_rows, piv_rows.root);
	pg_free(array_columns);
	pg_free(array_rows);

	return retval;
}

/*
 * Output the pivoted resultset with the printTable* functions.  Return true
 * if successful, false otherwise.
 */
static bool
printCrosstab(const PGresult *results,
			  int num_columns, pivot_field *piv_columns, int field_for_columns,
			  int num_rows, pivot_field *piv_rows, int field_for_rows,
			  int field_for_data)
{
	printQueryOpt popt = pset.popt;
	printTableContent cont;
	int			i,
				rn;
	char		col_align;
	int		   *horiz_map;
	bool		retval = false;

	printTableInit(&cont, &popt.topt, popt.title, num_columns + 1, num_rows);

	/* Step 1: set target column names (horizontal header) */

	/* The name of the first column is kept unchanged by the pivoting */
	printTableAddHeader(&cont,
						PQfname(results, field_for_rows),
						false,
						column_type_alignment(PQftype(results,
													  field_for_rows)));

	/*
	 * To iterate over piv_columns[] by piv_columns[].rank, create a reverse
	 * map associating each piv_columns[].rank to its index in piv_columns.
	 * This avoids an O(N^2) loop later.
	 */
	horiz_map = (int *) pg_malloc(sizeof(int) * num_columns);
	for (i = 0; i < num_columns; i++)
		horiz_map[piv_columns[i].rank] = i;

	/*
	 * The display alignment depends on its PQftype().
	 */
	col_align = column_type_alignment(PQftype(results, field_for_data));

	for (i = 0; i < num_columns; i++)
	{
		char	   *colname;

		colname = piv_columns[horiz_map[i]].name ?
			piv_columns[horiz_map[i]].name :
			(popt.nullPrint ? popt.nullPrint : "");

		printTableAddHeader(&cont, colname, false, col_align);
	}
	pg_free(horiz_map);

	/* Step 2: set row names in the first output column (vertical header) */
	for (i = 0; i < num_rows; i++)
	{
		int			k = piv_rows[i].rank;

		cont.cells[k * (num_columns + 1)] = piv_rows[i].name ?
			piv_rows[i].name :
			(popt.nullPrint ? popt.nullPrint : "");
	}
	cont.cellsadded = num_rows * (num_columns + 1);

	/*
	 * Step 3: fill in the content cells.
	 */
	for (rn = 0; rn < PQntuples(results); rn++)
	{
		int			row_number;
		int			col_number;
		pivot_field *rp,
				   *cp;
		pivot_field elt;

		/* Find target row */
		if (!PQgetisnull(results, rn, field_for_rows))
			elt.name = PQgetvalue(results, rn, field_for_rows);
		else
			elt.name = NULL;
		rp = (pivot_field *) bsearch(&elt,
									 piv_rows,
									 num_rows,
									 sizeof(pivot_field),
									 pivotFieldCompare);
		Assert(rp != NULL);
		row_number = rp->rank;

		/* Find target column */
		if (!PQgetisnull(results, rn, field_for_columns))
			elt.name = PQgetvalue(results, rn, field_for_columns);
		else
			elt.name = NULL;

		cp = (pivot_field *) bsearch(&elt,
									 piv_columns,
									 num_columns,
									 sizeof(pivot_field),
									 pivotFieldCompare);
		Assert(cp != NULL);
		col_number = cp->rank;

		/* Place value into cell */
		if (col_number >= 0 && row_number >= 0)
		{
			int			idx;

			/* index into the cont.cells array */
			idx = 1 + col_number + row_number * (num_columns + 1);

			/*
			 * If the cell already contains a value, raise an error.
			 */
			if (cont.cells[idx] != NULL)
			{
				pg_log_error("\\crosstabview: query result contains multiple data values for row \"%s\", column \"%s\"",
							 rp->name ? rp->name :
							 (popt.nullPrint ? popt.nullPrint : "(null)"),
							 cp->name ? cp->name :
							 (popt.nullPrint ? popt.nullPrint : "(null)"));
				goto error;
			}

			cont.cells[idx] = !PQgetisnull(results, rn, field_for_data) ?
				PQgetvalue(results, rn, field_for_data) :
				(popt.nullPrint ? popt.nullPrint : "");
		}
	}

	/*
	 * The non-initialized cells must be set to an empty string for the print
	 * functions
	 */
	for (i = 0; i < cont.cellsadded; i++)
	{
		if (cont.cells[i] == NULL)
			cont.cells[i] = "";
	}

	printTable(&cont, pset.queryFout, false, pset.logfile);
	retval = true;

error:
	printTableCleanup(&cont);

	return retval;
}

/*
 * The avl* functions below provide a minimalistic implementation of AVL binary
 * trees, to efficiently collect the distinct values that will form the horizontal
 * and vertical headers. It only supports adding new values, no removal or even
 * search.
 */
static void
avlInit(avl_tree *tree)
{
	tree->end = (avl_node *) pg_malloc0(sizeof(avl_node));
	tree->end->children[0] = tree->end->children[1] = tree->end;
	tree->count = 0;
	tree->root = tree->end;
}

/* Deallocate recursively an AVL tree, starting from node */
static void
avlFree(avl_tree *tree, avl_node *node)
{
	if (node->children[0] != tree->end)
	{
		avlFree(tree, node->children[0]);
		pg_free(node->children[0]);
	}
	if (node->children[1] != tree->end)
	{
		avlFree(tree, node->children[1]);
		pg_free(node->children[1]);
	}
	if (node == tree->root)
	{
		/* free the root separately as it's not child of anything */
		if (node != tree->end)
			pg_free(node);
		/* free the tree->end struct only once and when all else is freed */
		pg_free(tree->end);
	}
}

/* Set the height to 1 plus the greatest of left and right heights */
static void
avlUpdateHeight(avl_node *n)
{
	n->height = 1 + (n->children[0]->height > n->children[1]->height ?
					 n->children[0]->height :
					 n->children[1]->height);
}

/* Rotate a subtree left (dir=0) or right (dir=1). Not recursive */
static avl_node *
avlRotate(avl_node **current, int dir)
{
	avl_node   *before = *current;
	avl_node   *after = (*current)->children[dir];

	*current = after;
	before->children[dir] = after->children[!dir];
	avlUpdateHeight(before);
	after->children[!dir] = before;

	return after;
}

static int
avlBalance(avl_node *n)
{
	return n->children[0]->height - n->children[1]->height;
}

/*
 * After an insertion, possibly rebalance the tree so that the left and right
 * node heights don't differ by more than 1.
 * May update *node.
 */
static void
avlAdjustBalance(avl_tree *tree, avl_node **node)
{
	avl_node   *current = *node;
	int			b = avlBalance(current) / 2;

	if (b != 0)
	{
		int			dir = (1 - b) / 2;

		if (avlBalance(current->children[dir]) == -b)
			avlRotate(&current->children[dir], !dir);
		current = avlRotate(node, dir);
	}
	if (current != tree->end)
		avlUpdateHeight(current);
}

/*
 * Insert a new value/field, starting from *node, reaching the correct position
 * in the tree by recursion.  Possibly rebalance the tree and possibly update
 * *node.  Do nothing if the value is already present in the tree.
 */
static void
avlInsertNode(avl_tree *tree, avl_node **node, pivot_field field)
{
	avl_node   *current = *node;

	if (current == tree->end)
	{
		avl_node   *new_node = (avl_node *)
		pg_malloc(sizeof(avl_node));

		new_node->height = 1;
		new_node->field = field;
		new_node->children[0] = new_node->children[1] = tree->end;
		tree->count++;
		*node = new_node;
	}
	else
	{
		int			cmp = pivotFieldCompare(&field, &current->field);

		if (cmp != 0)
		{
			avlInsertNode(tree,
						  cmp > 0 ? &current->children[1] : &current->children[0],
						  field);
			avlAdjustBalance(tree, node);
		}
	}
}

/* Insert the value into the AVL tree, if it does not preexist */
static void
avlMergeValue(avl_tree *tree, char *name, char *sort_value)
{
	pivot_field field;

	field.name = name;
	field.rank = tree->count;
	field.sort_value = sort_value;
	avlInsertNode(tree, &tree->root, field);
}

/*
 * Recursively extract node values into the names array, in sorted order with a
 * left-to-right tree traversal.
 * Return the next candidate offset to write into the names array.
 * fields[] must be preallocated to hold tree->count entries
 */
static int
avlCollectFields(avl_tree *tree, avl_node *node, pivot_field *fields, int idx)
{
	if (node == tree->end)
		return idx;

	idx = avlCollectFields(tree, node->children[0], fields, idx);
	fields[idx] = node->field;
	return avlCollectFields(tree, node->children[1], fields, idx + 1);
}

static void
rankSort(int num_columns, pivot_field *piv_columns)
{
	int		   *hmap;			/* [[offset in piv_columns, rank], ...for
								 * every header entry] */
	int			i;

	hmap = (int *) pg_malloc(sizeof(int) * num_columns * 2);
	for (i = 0; i < num_columns; i++)
	{
		char	   *val = piv_columns[i].sort_value;

		/* ranking information is valid if non null and matches /^-?\d+$/ */
		if (val &&
			((*val == '-' &&
			  strspn(val + 1, "0123456789") == strlen(val + 1)) ||
			 strspn(val, "0123456789") == strlen(val)))
		{
			hmap[i * 2] = atoi(val);
			hmap[i * 2 + 1] = i;
		}
		else
		{
			/* invalid rank information ignored (equivalent to rank 0) */
			hmap[i * 2] = 0;
			hmap[i * 2 + 1] = i;
		}
	}

	qsort(hmap, num_columns, sizeof(int) * 2, rankCompare);

	for (i = 0; i < num_columns; i++)
	{
		piv_columns[hmap[i * 2 + 1]].rank = i;
	}

	pg_free(hmap);
}

/*
 * Look up a column reference, which can be either:
 * - a number from 1 to PQnfields(res)
 * - a column name matching one of PQfname(res,...)
 *
 * Returns zero-based column number, or -1 if not found or ambiguous.
 *
 * Note: may modify contents of "arg" string.
 */
static int
indexOfColumn(char *arg, const PGresult *res)
{
	int			idx;

	if (arg[0] && strspn(arg, "0123456789") == strlen(arg))
	{
		/* if arg contains only digits, it's a column number */
		idx = atoi(arg) - 1;
		if (idx < 0 || idx >= PQnfields(res))
		{
			pg_log_error("\\crosstabview: column number %d is out of range 1..%d",
						 idx + 1, PQnfields(res));
			return -1;
		}
	}
	else
	{
		int			i;

		/*
		 * Dequote and downcase the column name.  By checking for all-digits
		 * before doing this, we can ensure that a quoted name is treated as a
		 * name even if it's all digits.
		 */
		dequote_downcase_identifier(arg, true, pset.encoding);

		/* Now look for match(es) among res' column names */
		idx = -1;
		for (i = 0; i < PQnfields(res); i++)
		{
			if (strcmp(arg, PQfname(res, i)) == 0)
			{
				if (idx >= 0)
				{
					/* another idx was already found for the same name */
					pg_log_error("\\crosstabview: ambiguous column name: \"%s\"", arg);
					return -1;
				}
				idx = i;
			}
		}
		if (idx == -1)
		{
			pg_log_error("\\crosstabview: column name not found: \"%s\"", arg);
			return -1;
		}
	}

	return idx;
}

/*
 * Value comparator for vertical and horizontal headers
 * used for deduplication only.
 * - null values are considered equal
 * - non-null < null
 * - non-null values are compared with strcmp()
 */
static int
pivotFieldCompare(const void *a, const void *b)
{
	const pivot_field *pa = (const pivot_field *) a;
	const pivot_field *pb = (const pivot_field *) b;

	/* test null values */
	if (!pb->name)
		return pa->name ? -1 : 0;
	else if (!pa->name)
		return 1;

	/* non-null values */
	return strcmp(pa->name, pb->name);
}

static int
rankCompare(const void *a, const void *b)
{
	return *((const int *) a) - *((const int *) b);
}

相关信息

greenplumn 源码目录

相关文章

greenplumn command 源码

greenplumn command 源码

greenplumn common 源码

greenplumn common 源码

greenplumn copy 源码

greenplumn copy 源码

greenplumn crosstabview 源码

greenplumn describe 源码

greenplumn describe 源码

greenplumn help 源码

0  赞