spark PairRDDFunctions 源码

  • 2022-10-20
  • 浏览 (143)

spark PairRDDFunctions 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd

import java.nio.ByteBuffer
import java.util.{HashMap => JHashMap}

import scala.collection.{mutable, Map}
import scala.collection.JavaConverters._
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag

import com.clearspring.analytics.stream.cardinality.HyperLogLogPlus
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io.SequenceFile.CompressionType
import org.apache.hadoop.io.compress.CompressionCodec
import org.apache.hadoop.mapred.{FileOutputCommitter, FileOutputFormat, JobConf, OutputFormat}
import org.apache.hadoop.mapreduce.{Job => NewAPIHadoopJob, OutputFormat => NewOutputFormat}

import org.apache.spark._
import org.apache.spark.Partitioner.defaultPartitioner
import org.apache.spark.errors.SparkCoreErrors
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.SPECULATION_ENABLED
import org.apache.spark.internal.io._
import org.apache.spark.partial.{BoundedDouble, PartialResult}
import org.apache.spark.serializer.Serializer
import org.apache.spark.util.{SerializableConfiguration, SerializableJobConf, Utils}
import org.apache.spark.util.collection.CompactBuffer
import org.apache.spark.util.random.StratifiedSamplingUtils

/**
 * Extra functions available on RDDs of (key, value) pairs through an implicit conversion.
 */
class PairRDDFunctions[K, V](self: RDD[(K, V)])
    (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null)
  extends Logging with Serializable {

  /**
   * Generic function to combine the elements for each key using a custom set of aggregation
   * functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C
   *
   * Users provide three functions:
   *
   *  - `createCombiner`, which turns a V into a C (e.g., creates a one-element list)
   *  - `mergeValue`, to merge a V into a C (e.g., adds it to the end of a list)
   *  - `mergeCombiners`, to combine two C's into a single one.
   *
   * In addition, users can control the partitioning of the output RDD, and whether to perform
   * map-side aggregation (if a mapper can produce multiple items with the same key).
   *
   * @note V and C can be different -- for example, one might group an RDD of type
   * (Int, Int) into an RDD of type (Int, Seq[Int]).
   */
  def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
    require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
    if (keyClass.isArray) {
      if (mapSideCombine) {
        throw SparkCoreErrors.cannotUseMapSideCombiningWithArrayKeyError()
      }
      if (partitioner.isInstanceOf[HashPartitioner]) {
        throw SparkCoreErrors.hashPartitionerCannotPartitionArrayKeyError()
      }
    }
    val aggregator = new Aggregator[K, V, C](
      self.context.clean(createCombiner),
      self.context.clean(mergeValue),
      self.context.clean(mergeCombiners))
    if (self.partitioner == Some(partitioner)) {
      self.mapPartitions(iter => {
        val context = TaskContext.get()
        new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
      }, preservesPartitioning = true)
    } else {
      new ShuffledRDD[K, V, C](self, partitioner)
        .setSerializer(serializer)
        .setAggregator(aggregator)
        .setMapSideCombine(mapSideCombine)
    }
  }

  /**
   * Generic function to combine the elements for each key using a custom set of aggregation
   * functions. This method is here for backward compatibility. It does not provide combiner
   * classtag information to the shuffle.
   *
   * @see `combineByKeyWithClassTag`
   */
  def combineByKey[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null): RDD[(K, C)] = self.withScope {
    combineByKeyWithClassTag(createCombiner, mergeValue, mergeCombiners,
      partitioner, mapSideCombine, serializer)(null)
  }

  /**
   * Simplified version of combineByKeyWithClassTag that hash-partitions the output RDD.
   * This method is here for backward compatibility. It does not provide combiner
   * classtag information to the shuffle.
   *
   * @see `combineByKeyWithClassTag`
   */
  def combineByKey[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      numPartitions: Int): RDD[(K, C)] = self.withScope {
    combineByKeyWithClassTag(createCombiner, mergeValue, mergeCombiners, numPartitions)(null)
  }

  /**
   * Simplified version of combineByKeyWithClassTag that hash-partitions the output RDD.
   */
  def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      numPartitions: Int)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
    combineByKeyWithClassTag(createCombiner, mergeValue, mergeCombiners,
      new HashPartitioner(numPartitions))
  }

  /**
   * Aggregate the values of each key, using given combine functions and a neutral "zero value".
   * This function can return a different result type, U, than the type of the values in this RDD,
   * V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
   * as in scala.TraversableOnce. The former operation is used for merging values within a
   * partition, and the latter is used for merging values between partitions. To avoid memory
   * allocation, both of these functions are allowed to modify and return their first argument
   * instead of creating a new U.
   */
  def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U,
      combOp: (U, U) => U): RDD[(K, U)] = self.withScope {
    // Serialize the zero value to a byte array so that we can get a new clone of it on each key
    val zeroBuffer = SparkEnv.get.serializer.newInstance().serialize(zeroValue)
    val zeroArray = new Array[Byte](zeroBuffer.limit)
    zeroBuffer.get(zeroArray)

    lazy val cachedSerializer = SparkEnv.get.serializer.newInstance()
    val createZero = () => cachedSerializer.deserialize[U](ByteBuffer.wrap(zeroArray))

    // We will clean the combiner closure later in `combineByKey`
    val cleanedSeqOp = self.context.clean(seqOp)
    combineByKeyWithClassTag[U]((v: V) => cleanedSeqOp(createZero(), v),
      cleanedSeqOp, combOp, partitioner)
  }

  /**
   * Aggregate the values of each key, using given combine functions and a neutral "zero value".
   * This function can return a different result type, U, than the type of the values in this RDD,
   * V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
   * as in scala.TraversableOnce. The former operation is used for merging values within a
   * partition, and the latter is used for merging values between partitions. To avoid memory
   * allocation, both of these functions are allowed to modify and return their first argument
   * instead of creating a new U.
   */
  def aggregateByKey[U: ClassTag](zeroValue: U, numPartitions: Int)(seqOp: (U, V) => U,
      combOp: (U, U) => U): RDD[(K, U)] = self.withScope {
    aggregateByKey(zeroValue, new HashPartitioner(numPartitions))(seqOp, combOp)
  }

  /**
   * Aggregate the values of each key, using given combine functions and a neutral "zero value".
   * This function can return a different result type, U, than the type of the values in this RDD,
   * V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
   * as in scala.TraversableOnce. The former operation is used for merging values within a
   * partition, and the latter is used for merging values between partitions. To avoid memory
   * allocation, both of these functions are allowed to modify and return their first argument
   * instead of creating a new U.
   */
  def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
      combOp: (U, U) => U): RDD[(K, U)] = self.withScope {
    aggregateByKey(zeroValue, defaultPartitioner(self))(seqOp, combOp)
  }

  /**
   * Merge the values for each key using an associative function and a neutral "zero value" which
   * may be added to the result an arbitrary number of times, and must not change the result
   * (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication.).
   */
  def foldByKey(
      zeroValue: V,
      partitioner: Partitioner)(func: (V, V) => V): RDD[(K, V)] = self.withScope {
    // Serialize the zero value to a byte array so that we can get a new clone of it on each key
    val zeroBuffer = SparkEnv.get.serializer.newInstance().serialize(zeroValue)
    val zeroArray = new Array[Byte](zeroBuffer.limit)
    zeroBuffer.get(zeroArray)

    // When deserializing, use a lazy val to create just one instance of the serializer per task
    lazy val cachedSerializer = SparkEnv.get.serializer.newInstance()
    val createZero = () => cachedSerializer.deserialize[V](ByteBuffer.wrap(zeroArray))

    val cleanedFunc = self.context.clean(func)
    combineByKeyWithClassTag[V]((v: V) => cleanedFunc(createZero(), v),
      cleanedFunc, cleanedFunc, partitioner)
  }

  /**
   * Merge the values for each key using an associative function and a neutral "zero value" which
   * may be added to the result an arbitrary number of times, and must not change the result
   * (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication.).
   */
  def foldByKey(zeroValue: V, numPartitions: Int)(func: (V, V) => V): RDD[(K, V)] = self.withScope {
    foldByKey(zeroValue, new HashPartitioner(numPartitions))(func)
  }

  /**
   * Merge the values for each key using an associative function and a neutral "zero value" which
   * may be added to the result an arbitrary number of times, and must not change the result
   * (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication.).
   */
  def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)] = self.withScope {
    foldByKey(zeroValue, defaultPartitioner(self))(func)
  }

  /**
   * Return a subset of this RDD sampled by key (via stratified sampling).
   *
   * Create a sample of this RDD using variable sampling rates for different keys as specified by
   * `fractions`, a key to sampling rate map, via simple random sampling with one pass over the
   * RDD, to produce a sample of size that's approximately equal to the sum of
   * math.ceil(numItems * samplingRate) over all key values.
   *
   * @param withReplacement whether to sample with or without replacement
   * @param fractions map of specific keys to sampling rates
   * @param seed seed for the random number generator
   * @return RDD containing the sampled subset
   */
  def sampleByKey(withReplacement: Boolean,
      fractions: Map[K, Double],
      seed: Long = Utils.random.nextLong): RDD[(K, V)] = self.withScope {

    require(fractions.values.forall(v => v >= 0.0), "Negative sampling rates.")

    val samplingFunc = if (withReplacement) {
      StratifiedSamplingUtils.getPoissonSamplingFunction(self, fractions, false, seed)
    } else {
      StratifiedSamplingUtils.getBernoulliSamplingFunction(self, fractions, false, seed)
    }
    self.mapPartitionsWithIndex(samplingFunc, preservesPartitioning = true, isOrderSensitive = true)
  }

  /**
   * Return a subset of this RDD sampled by key (via stratified sampling) containing exactly
   * math.ceil(numItems * samplingRate) for each stratum (group of pairs with the same key).
   *
   * This method differs from [[sampleByKey]] in that we make additional passes over the RDD to
   * create a sample size that's exactly equal to the sum of math.ceil(numItems * samplingRate)
   * over all key values with a 99.99% confidence. When sampling without replacement, we need one
   * additional pass over the RDD to guarantee sample size; when sampling with replacement, we need
   * two additional passes.
   *
   * @param withReplacement whether to sample with or without replacement
   * @param fractions map of specific keys to sampling rates
   * @param seed seed for the random number generator
   * @return RDD containing the sampled subset
   */
  def sampleByKeyExact(
      withReplacement: Boolean,
      fractions: Map[K, Double],
      seed: Long = Utils.random.nextLong): RDD[(K, V)] = self.withScope {

    require(fractions.values.forall(v => v >= 0.0), "Negative sampling rates.")

    val samplingFunc = if (withReplacement) {
      StratifiedSamplingUtils.getPoissonSamplingFunction(self, fractions, true, seed)
    } else {
      StratifiedSamplingUtils.getBernoulliSamplingFunction(self, fractions, true, seed)
    }
    self.mapPartitionsWithIndex(samplingFunc, preservesPartitioning = true, isOrderSensitive = true)
  }

  /**
   * Merge the values for each key using an associative and commutative reduce function. This will
   * also perform the merging locally on each mapper before sending results to a reducer, similarly
   * to a "combiner" in MapReduce.
   */
  def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
    combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
  }

  /**
   * Merge the values for each key using an associative and commutative reduce function. This will
   * also perform the merging locally on each mapper before sending results to a reducer, similarly
   * to a "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions.
   */
  def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = self.withScope {
    reduceByKey(new HashPartitioner(numPartitions), func)
  }

  /**
   * Merge the values for each key using an associative and commutative reduce function. This will
   * also perform the merging locally on each mapper before sending results to a reducer, similarly
   * to a "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/
   * parallelism level.
   */
  def reduceByKey(func: (V, V) => V): RDD[(K, V)] = self.withScope {
    reduceByKey(defaultPartitioner(self), func)
  }

  /**
   * Merge the values for each key using an associative and commutative reduce function, but return
   * the results immediately to the master as a Map. This will also perform the merging locally on
   * each mapper before sending results to a reducer, similarly to a "combiner" in MapReduce.
   */
  def reduceByKeyLocally(func: (V, V) => V): Map[K, V] = self.withScope {
    val cleanedF = self.sparkContext.clean(func)

    if (keyClass.isArray) {
      throw SparkCoreErrors.reduceByKeyLocallyNotSupportArrayKeysError()
    }

    val reducePartition = (iter: Iterator[(K, V)]) => {
      val map = new JHashMap[K, V]
      iter.foreach { pair =>
        val old = map.get(pair._1)
        map.put(pair._1, if (old == null) pair._2 else cleanedF(old, pair._2))
      }
      Iterator(map)
    } : Iterator[JHashMap[K, V]]

    val mergeMaps = (m1: JHashMap[K, V], m2: JHashMap[K, V]) => {
      m2.asScala.foreach { pair =>
        val old = m1.get(pair._1)
        m1.put(pair._1, if (old == null) pair._2 else cleanedF(old, pair._2))
      }
      m1
    } : JHashMap[K, V]

    self.mapPartitions(reducePartition).reduce(mergeMaps).asScala
  }

  /**
   * Count the number of elements for each key, collecting the results to a local Map.
   *
   * @note This method should only be used if the resulting map is expected to be small, as
   * the whole thing is loaded into the driver's memory.
   * To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which
   * returns an RDD[T, Long] instead of a map.
   */
  def countByKey(): Map[K, Long] = self.withScope {
    self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap
  }

  /**
   * Approximate version of countByKey that can return a partial result if it does
   * not finish within a timeout.
   *
   * The confidence is the probability that the error bounds of the result will
   * contain the true value. That is, if countApprox were called repeatedly
   * with confidence 0.9, we would expect 90% of the results to contain the
   * true count. The confidence must be in the range [0,1] or an exception will
   * be thrown.
   *
   * @param timeout maximum time to wait for the job, in milliseconds
   * @param confidence the desired statistical confidence in the result
   * @return a potentially incomplete result, with error bounds
   */
  def countByKeyApprox(timeout: Long, confidence: Double = 0.95)
      : PartialResult[Map[K, BoundedDouble]] = self.withScope {
    self.map(_._1).countByValueApprox(timeout, confidence)
  }

  /**
   * Return approximate number of distinct values for each key in this RDD.
   *
   * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice:
   * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available
   * <a href="https://doi.org/10.1145/2452376.2452456">here</a>.
   *
   * The relative accuracy is approximately `1.054 / sqrt(2^p)`. Setting a nonzero (`sp` is
   * greater than `p`) would trigger sparse representation of registers, which may reduce the
   * memory consumption and increase accuracy when the cardinality is small.
   *
   * @param p The precision value for the normal set.
   *          `p` must be a value between 4 and `sp` if `sp` is not zero (32 max).
   * @param sp The precision value for the sparse set, between 0 and 32.
   *           If `sp` equals 0, the sparse representation is skipped.
   * @param partitioner Partitioner to use for the resulting RDD.
   */
  def countApproxDistinctByKey(
      p: Int,
      sp: Int,
      partitioner: Partitioner): RDD[(K, Long)] = self.withScope {
    require(p >= 4, s"p ($p) must be >= 4")
    require(sp <= 32, s"sp ($sp) must be <= 32")
    require(sp == 0 || p <= sp, s"p ($p) cannot be greater than sp ($sp)")
    val createHLL = (v: V) => {
      val hll = new HyperLogLogPlus(p, sp)
      hll.offer(v)
      hll
    }
    val mergeValueHLL = (hll: HyperLogLogPlus, v: V) => {
      hll.offer(v)
      hll
    }
    val mergeHLL = (h1: HyperLogLogPlus, h2: HyperLogLogPlus) => {
      h1.addAll(h2)
      h1
    }

    combineByKeyWithClassTag(createHLL, mergeValueHLL, mergeHLL, partitioner)
      .mapValues(_.cardinality())
  }

  /**
   * Return approximate number of distinct values for each key in this RDD.
   *
   * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice:
   * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available
   * <a href="https://doi.org/10.1145/2452376.2452456">here</a>.
   *
   * @param relativeSD Relative accuracy. Smaller values create counters that require more space.
   *                   It must be greater than 0.000017.
   * @param partitioner partitioner of the resulting RDD
   */
  def countApproxDistinctByKey(
      relativeSD: Double,
      partitioner: Partitioner): RDD[(K, Long)] = self.withScope {
    require(relativeSD > 0.000017, s"accuracy ($relativeSD) must be greater than 0.000017")
    val p = math.ceil(2.0 * math.log(1.054 / relativeSD) / math.log(2)).toInt
    assert(p <= 32)
    countApproxDistinctByKey(if (p < 4) 4 else p, 0, partitioner)
  }

  /**
   * Return approximate number of distinct values for each key in this RDD.
   *
   * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice:
   * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available
   * <a href="https://doi.org/10.1145/2452376.2452456">here</a>.
   *
   * @param relativeSD Relative accuracy. Smaller values create counters that require more space.
   *                   It must be greater than 0.000017.
   * @param numPartitions number of partitions of the resulting RDD
   */
  def countApproxDistinctByKey(
      relativeSD: Double,
      numPartitions: Int): RDD[(K, Long)] = self.withScope {
    countApproxDistinctByKey(relativeSD, new HashPartitioner(numPartitions))
  }

  /**
   * Return approximate number of distinct values for each key in this RDD.
   *
   * The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice:
   * Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available
   * <a href="https://doi.org/10.1145/2452376.2452456">here</a>.
   *
   * @param relativeSD Relative accuracy. Smaller values create counters that require more space.
   *                   It must be greater than 0.000017.
   */
  def countApproxDistinctByKey(relativeSD: Double = 0.05): RDD[(K, Long)] = self.withScope {
    countApproxDistinctByKey(relativeSD, defaultPartitioner(self))
  }

  /**
   * Group the values for each key in the RDD into a single sequence. Allows controlling the
   * partitioning of the resulting key-value pair RDD by passing a Partitioner.
   * The ordering of elements within each group is not guaranteed, and may even differ
   * each time the resulting RDD is evaluated.
   *
   * @note This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
   * or `PairRDDFunctions.reduceByKey` will provide much better performance.
   *
   * @note As currently implemented, groupByKey must be able to hold all the key-value pairs for any
   * key in memory. If a key has too many values, it can result in an `OutOfMemoryError`.
   */
  def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = self.withScope {
    // groupByKey shouldn't use map side combine because map side combine does not
    // reduce the amount of data shuffled and requires all map side data be inserted
    // into a hash table, leading to more objects in the old gen.
    val createCombiner = (v: V) => CompactBuffer(v)
    val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
    val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
    val bufs = combineByKeyWithClassTag[CompactBuffer[V]](
      createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
    bufs.asInstanceOf[RDD[(K, Iterable[V])]]
  }

  /**
   * Group the values for each key in the RDD into a single sequence. Hash-partitions the
   * resulting RDD with into `numPartitions` partitions. The ordering of elements within
   * each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.
   *
   * @note This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
   * or `PairRDDFunctions.reduceByKey` will provide much better performance.
   *
   * @note As currently implemented, groupByKey must be able to hold all the key-value pairs for any
   * key in memory. If a key has too many values, it can result in an `OutOfMemoryError`.
   */
  def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])] = self.withScope {
    groupByKey(new HashPartitioner(numPartitions))
  }

  /**
   * Return a copy of the RDD partitioned using the specified partitioner.
   */
  def partitionBy(partitioner: Partitioner): RDD[(K, V)] = self.withScope {
    if (keyClass.isArray && partitioner.isInstanceOf[HashPartitioner]) {
      throw SparkCoreErrors.hashPartitionerCannotPartitionArrayKeyError()
    }
    if (self.partitioner == Some(partitioner)) {
      self
    } else {
      new ShuffledRDD[K, V, V](self, partitioner)
    }
  }

  /**
   * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
   * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
   * (k, v2) is in `other`. Uses the given Partitioner to partition the output RDD.
   */
  def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = self.withScope {
    this.cogroup(other, partitioner).flatMapValues( pair =>
      for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, w)
    )
  }

  /**
   * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
   * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
   * pair (k, (v, None)) if no elements in `other` have key k. Uses the given Partitioner to
   * partition the output RDD.
   */
  def leftOuterJoin[W](
      other: RDD[(K, W)],
      partitioner: Partitioner): RDD[(K, (V, Option[W]))] = self.withScope {
    this.cogroup(other, partitioner).flatMapValues { pair =>
      if (pair._2.isEmpty) {
        pair._1.iterator.map(v => (v, None))
      } else {
        for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, Some(w))
      }
    }
  }

  /**
   * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
   * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
   * pair (k, (None, w)) if no elements in `this` have key k. Uses the given Partitioner to
   * partition the output RDD.
   */
  def rightOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner)
      : RDD[(K, (Option[V], W))] = self.withScope {
    this.cogroup(other, partitioner).flatMapValues { pair =>
      if (pair._1.isEmpty) {
        pair._2.iterator.map(w => (None, w))
      } else {
        for (v <- pair._1.iterator; w <- pair._2.iterator) yield (Some(v), w)
      }
    }
  }

  /**
   * Perform a full outer join of `this` and `other`. For each element (k, v) in `this`, the
   * resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in `other`, or
   * the pair (k, (Some(v), None)) if no elements in `other` have key k. Similarly, for each
   * element (k, w) in `other`, the resulting RDD will either contain all pairs
   * (k, (Some(v), Some(w))) for v in `this`, or the pair (k, (None, Some(w))) if no elements
   * in `this` have key k. Uses the given Partitioner to partition the output RDD.
   */
  def fullOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner)
      : RDD[(K, (Option[V], Option[W]))] = self.withScope {
    this.cogroup(other, partitioner).flatMapValues {
      case (vs, Seq()) => vs.iterator.map(v => (Some(v), None))
      case (Seq(), ws) => ws.iterator.map(w => (None, Some(w)))
      case (vs, ws) => for (v <- vs.iterator; w <- ws.iterator) yield (Some(v), Some(w))
    }
  }

  /**
   * Simplified version of combineByKeyWithClassTag that hash-partitions the resulting RDD using the
   * existing partitioner/parallelism level. This method is here for backward compatibility. It
   * does not provide combiner classtag information to the shuffle.
   *
   * @see `combineByKeyWithClassTag`
   */
  def combineByKey[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C): RDD[(K, C)] = self.withScope {
    combineByKeyWithClassTag(createCombiner, mergeValue, mergeCombiners)(null)
  }

  /**
   * Simplified version of combineByKeyWithClassTag that hash-partitions the resulting RDD using the
   * existing partitioner/parallelism level.
   */
  def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
    combineByKeyWithClassTag(createCombiner, mergeValue, mergeCombiners, defaultPartitioner(self))
  }

  /**
   * Group the values for each key in the RDD into a single sequence. Hash-partitions the
   * resulting RDD with the existing partitioner/parallelism level. The ordering of elements
   * within each group is not guaranteed, and may even differ each time the resulting RDD is
   * evaluated.
   *
   * @note This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
   * or `PairRDDFunctions.reduceByKey` will provide much better performance.
   */
  def groupByKey(): RDD[(K, Iterable[V])] = self.withScope {
    groupByKey(defaultPartitioner(self))
  }

  /**
   * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
   * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
   * (k, v2) is in `other`. Performs a hash join across the cluster.
   */
  def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = self.withScope {
    join(other, defaultPartitioner(self, other))
  }

  /**
   * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
   * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
   * (k, v2) is in `other`. Performs a hash join across the cluster.
   */
  def join[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, W))] = self.withScope {
    join(other, new HashPartitioner(numPartitions))
  }

  /**
   * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
   * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
   * pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output
   * using the existing partitioner/parallelism level.
   */
  def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))] = self.withScope {
    leftOuterJoin(other, defaultPartitioner(self, other))
  }

  /**
   * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
   * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
   * pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output
   * into `numPartitions` partitions.
   */
  def leftOuterJoin[W](
      other: RDD[(K, W)],
      numPartitions: Int): RDD[(K, (V, Option[W]))] = self.withScope {
    leftOuterJoin(other, new HashPartitioner(numPartitions))
  }

  /**
   * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
   * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
   * pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting
   * RDD using the existing partitioner/parallelism level.
   */
  def rightOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (Option[V], W))] = self.withScope {
    rightOuterJoin(other, defaultPartitioner(self, other))
  }

  /**
   * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
   * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
   * pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting
   * RDD into the given number of partitions.
   */
  def rightOuterJoin[W](
      other: RDD[(K, W)],
      numPartitions: Int): RDD[(K, (Option[V], W))] = self.withScope {
    rightOuterJoin(other, new HashPartitioner(numPartitions))
  }

  /**
   * Perform a full outer join of `this` and `other`. For each element (k, v) in `this`, the
   * resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in `other`, or
   * the pair (k, (Some(v), None)) if no elements in `other` have key k. Similarly, for each
   * element (k, w) in `other`, the resulting RDD will either contain all pairs
   * (k, (Some(v), Some(w))) for v in `this`, or the pair (k, (None, Some(w))) if no elements
   * in `this` have key k. Hash-partitions the resulting RDD using the existing partitioner/
   * parallelism level.
   */
  def fullOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (Option[V], Option[W]))] = self.withScope {
    fullOuterJoin(other, defaultPartitioner(self, other))
  }

  /**
   * Perform a full outer join of `this` and `other`. For each element (k, v) in `this`, the
   * resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in `other`, or
   * the pair (k, (Some(v), None)) if no elements in `other` have key k. Similarly, for each
   * element (k, w) in `other`, the resulting RDD will either contain all pairs
   * (k, (Some(v), Some(w))) for v in `this`, or the pair (k, (None, Some(w))) if no elements
   * in `this` have key k. Hash-partitions the resulting RDD into the given number of partitions.
   */
  def fullOuterJoin[W](
      other: RDD[(K, W)],
      numPartitions: Int): RDD[(K, (Option[V], Option[W]))] = self.withScope {
    fullOuterJoin(other, new HashPartitioner(numPartitions))
  }

  /**
   * Return the key-value pairs in this RDD to the master as a Map.
   *
   * Warning: this doesn't return a multimap (so if you have multiple values to the same key, only
   *          one value per key is preserved in the map returned)
   *
   * @note this method should only be used if the resulting data is expected to be small, as
   * all the data is loaded into the driver's memory.
   */
  def collectAsMap(): Map[K, V] = self.withScope {
    val data = self.collect()
    val map = new mutable.HashMap[K, V]
    map.sizeHint(data.length)
    data.foreach { pair => map.put(pair._1, pair._2) }
    map
  }

  /**
   * Pass each value in the key-value pair RDD through a map function without changing the keys;
   * this also retains the original RDD's partitioning.
   */
  def mapValues[U](f: V => U): RDD[(K, U)] = self.withScope {
    val cleanF = self.context.clean(f)
    new MapPartitionsRDD[(K, U), (K, V)](self,
      (context, pid, iter) => iter.map { case (k, v) => (k, cleanF(v)) },
      preservesPartitioning = true)
  }

  /**
   * Pass each value in the key-value pair RDD through a flatMap function without changing the
   * keys; this also retains the original RDD's partitioning.
   */
  def flatMapValues[U](f: V => TraversableOnce[U]): RDD[(K, U)] = self.withScope {
    val cleanF = self.context.clean(f)
    new MapPartitionsRDD[(K, U), (K, V)](self,
      (context, pid, iter) => iter.flatMap { case (k, v) =>
        cleanF(v).map(x => (k, x))
      },
      preservesPartitioning = true)
  }

  /**
   * For each key k in `this` or `other1` or `other2` or `other3`,
   * return a resulting RDD that contains a tuple with the list of values
   * for that key in `this`, `other1`, `other2` and `other3`.
   */
  def cogroup[W1, W2, W3](other1: RDD[(K, W1)],
      other2: RDD[(K, W2)],
      other3: RDD[(K, W3)],
      partitioner: Partitioner)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = self.withScope {
    if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) {
      throw SparkCoreErrors.hashPartitionerCannotPartitionArrayKeyError()
    }
    val cg = new CoGroupedRDD[K](Seq(self, other1, other2, other3), partitioner)
    cg.mapValues { case Array(vs, w1s, w2s, w3s) =>
       (vs.asInstanceOf[Iterable[V]],
         w1s.asInstanceOf[Iterable[W1]],
         w2s.asInstanceOf[Iterable[W2]],
         w3s.asInstanceOf[Iterable[W3]])
    }
  }

  /**
   * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
   * list of values for that key in `this` as well as `other`.
   */
  def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner)
      : RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope {
    if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) {
      throw SparkCoreErrors.hashPartitionerCannotPartitionArrayKeyError()
    }
    val cg = new CoGroupedRDD[K](Seq(self, other), partitioner)
    cg.mapValues { case Array(vs, w1s) =>
      (vs.asInstanceOf[Iterable[V]], w1s.asInstanceOf[Iterable[W]])
    }
  }

  /**
   * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
   * tuple with the list of values for that key in `this`, `other1` and `other2`.
   */
  def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = self.withScope {
    if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) {
      throw SparkCoreErrors.hashPartitionerCannotPartitionArrayKeyError()
    }
    val cg = new CoGroupedRDD[K](Seq(self, other1, other2), partitioner)
    cg.mapValues { case Array(vs, w1s, w2s) =>
      (vs.asInstanceOf[Iterable[V]],
        w1s.asInstanceOf[Iterable[W1]],
        w2s.asInstanceOf[Iterable[W2]])
    }
  }

  /**
   * For each key k in `this` or `other1` or `other2` or `other3`,
   * return a resulting RDD that contains a tuple with the list of values
   * for that key in `this`, `other1`, `other2` and `other3`.
   */
  def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)])
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = self.withScope {
    cogroup(other1, other2, other3, defaultPartitioner(self, other1, other2, other3))
  }

  /**
   * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
   * list of values for that key in `this` as well as `other`.
   */
  def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope {
    cogroup(other, defaultPartitioner(self, other))
  }

  /**
   * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
   * tuple with the list of values for that key in `this`, `other1` and `other2`.
   */
  def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = self.withScope {
    cogroup(other1, other2, defaultPartitioner(self, other1, other2))
  }

  /**
   * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
   * list of values for that key in `this` as well as `other`.
   */
  def cogroup[W](
      other: RDD[(K, W)],
      numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope {
    cogroup(other, new HashPartitioner(numPartitions))
  }

  /**
   * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
   * tuple with the list of values for that key in `this`, `other1` and `other2`.
   */
  def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numPartitions: Int)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = self.withScope {
    cogroup(other1, other2, new HashPartitioner(numPartitions))
  }

  /**
   * For each key k in `this` or `other1` or `other2` or `other3`,
   * return a resulting RDD that contains a tuple with the list of values
   * for that key in `this`, `other1`, `other2` and `other3`.
   */
  def cogroup[W1, W2, W3](other1: RDD[(K, W1)],
      other2: RDD[(K, W2)],
      other3: RDD[(K, W3)],
      numPartitions: Int)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = self.withScope {
    cogroup(other1, other2, other3, new HashPartitioner(numPartitions))
  }

  /** Alias for cogroup. */
  def groupWith[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope {
    cogroup(other, defaultPartitioner(self, other))
  }

  /** Alias for cogroup. */
  def groupWith[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = self.withScope {
    cogroup(other1, other2, defaultPartitioner(self, other1, other2))
  }

  /** Alias for cogroup. */
  def groupWith[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)])
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = self.withScope {
    cogroup(other1, other2, other3, defaultPartitioner(self, other1, other2, other3))
  }

  /**
   * Return an RDD with the pairs from `this` whose keys are not in `other`.
   *
   * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting
   * RDD will be less than or equal to us.
   */
  def subtractByKey[W: ClassTag](other: RDD[(K, W)]): RDD[(K, V)] = self.withScope {
    subtractByKey(other, self.partitioner.getOrElse(new HashPartitioner(self.partitions.length)))
  }

  /**
   * Return an RDD with the pairs from `this` whose keys are not in `other`.
   */
  def subtractByKey[W: ClassTag](
      other: RDD[(K, W)],
      numPartitions: Int): RDD[(K, V)] = self.withScope {
    subtractByKey(other, new HashPartitioner(numPartitions))
  }

  /**
   * Return an RDD with the pairs from `this` whose keys are not in `other`.
   */
  def subtractByKey[W: ClassTag](other: RDD[(K, W)], p: Partitioner): RDD[(K, V)] = self.withScope {
    new SubtractedRDD[K, V, W](self, other, p)
  }

  /**
   * Return the list of values in the RDD for key `key`. This operation is done efficiently if the
   * RDD has a known partitioner by only searching the partition that the key maps to.
   */
  def lookup(key: K): Seq[V] = self.withScope {
    self.partitioner match {
      case Some(p) =>
        val index = p.getPartition(key)
        val process = (it: Iterator[(K, V)]) => {
          val buf = new ArrayBuffer[V]
          for (pair <- it if pair._1 == key) {
            buf += pair._2
          }
          buf.toSeq
        } : Seq[V]
        val res = self.context.runJob(self, process, Array(index))
        res(0)
      case None =>
        self.filter(_._1 == key).map(_._2).collect()
    }
  }

  /**
   * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class
   * supporting the key and value types K and V in this RDD.
   */
  def saveAsHadoopFile[F <: OutputFormat[K, V]](
      path: String)(implicit fm: ClassTag[F]): Unit = self.withScope {
    saveAsHadoopFile(path, keyClass, valueClass, fm.runtimeClass.asInstanceOf[Class[F]])
  }

  /**
   * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class
   * supporting the key and value types K and V in this RDD. Compress the result with the
   * supplied codec.
   */
  def saveAsHadoopFile[F <: OutputFormat[K, V]](
      path: String,
      codec: Class[_ <: CompressionCodec])(implicit fm: ClassTag[F]): Unit = self.withScope {
    val runtimeClass = fm.runtimeClass
    saveAsHadoopFile(path, keyClass, valueClass, runtimeClass.asInstanceOf[Class[F]], codec)
  }

  /**
   * Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat`
   * (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.
   */
  def saveAsNewAPIHadoopFile[F <: NewOutputFormat[K, V]](
      path: String)(implicit fm: ClassTag[F]): Unit = self.withScope {
    saveAsNewAPIHadoopFile(path, keyClass, valueClass, fm.runtimeClass.asInstanceOf[Class[F]])
  }

  /**
   * Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat`
   * (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.
   */
  def saveAsNewAPIHadoopFile(
      path: String,
      keyClass: Class[_],
      valueClass: Class[_],
      outputFormatClass: Class[_ <: NewOutputFormat[_, _]],
      conf: Configuration = self.context.hadoopConfiguration): Unit = self.withScope {
    // Rename this as hadoopConf internally to avoid shadowing (see SPARK-2038).
    val hadoopConf = conf
    val job = NewAPIHadoopJob.getInstance(hadoopConf)
    job.setOutputKeyClass(keyClass)
    job.setOutputValueClass(valueClass)
    job.setOutputFormatClass(outputFormatClass)
    val jobConfiguration = job.getConfiguration
    jobConfiguration.set("mapreduce.output.fileoutputformat.outputdir", path)
    saveAsNewAPIHadoopDataset(jobConfiguration)
  }

  /**
   * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class
   * supporting the key and value types K and V in this RDD. Compress with the supplied codec.
   */
  def saveAsHadoopFile(
      path: String,
      keyClass: Class[_],
      valueClass: Class[_],
      outputFormatClass: Class[_ <: OutputFormat[_, _]],
      codec: Class[_ <: CompressionCodec]): Unit = self.withScope {
    saveAsHadoopFile(path, keyClass, valueClass, outputFormatClass,
      new JobConf(self.context.hadoopConfiguration), Option(codec))
  }

  /**
   * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class
   * supporting the key and value types K and V in this RDD.
   *
   * @note We should make sure our tasks are idempotent when speculation is enabled, i.e. do
   * not use output committer that writes data directly.
   * There is an example in https://issues.apache.org/jira/browse/SPARK-10063 to show the bad
   * result of using direct output committer with speculation enabled.
   */
  def saveAsHadoopFile(
      path: String,
      keyClass: Class[_],
      valueClass: Class[_],
      outputFormatClass: Class[_ <: OutputFormat[_, _]],
      conf: JobConf = new JobConf(self.context.hadoopConfiguration),
      codec: Option[Class[_ <: CompressionCodec]] = None): Unit = self.withScope {
    // Rename this as hadoopConf internally to avoid shadowing (see SPARK-2038).
    val hadoopConf = conf
    hadoopConf.setOutputKeyClass(keyClass)
    hadoopConf.setOutputValueClass(valueClass)
    conf.setOutputFormat(outputFormatClass)
    for (c <- codec) {
      hadoopConf.setCompressMapOutput(true)
      hadoopConf.set("mapreduce.output.fileoutputformat.compress", "true")
      hadoopConf.setMapOutputCompressorClass(c)
      hadoopConf.set("mapreduce.output.fileoutputformat.compress.codec", c.getCanonicalName)
      hadoopConf.set("mapreduce.output.fileoutputformat.compress.type",
        CompressionType.BLOCK.toString)
    }

    // Use configured output committer if already set
    if (conf.getOutputCommitter == null) {
      hadoopConf.setOutputCommitter(classOf[FileOutputCommitter])
    }

    // When speculation is on and output committer class name contains "Direct", we should warn
    // users that they may loss data if they are using a direct output committer.
    val speculationEnabled = self.conf.get(SPECULATION_ENABLED)
    val outputCommitterClass = hadoopConf.get("mapred.output.committer.class", "")
    if (speculationEnabled && outputCommitterClass.contains("Direct")) {
      val warningMessage =
        s"$outputCommitterClass may be an output committer that writes data directly to " +
          "the final location. Because speculation is enabled, this output committer may " +
          "cause data loss (see the case in SPARK-10063). If possible, please use an output " +
          "committer that does not have this behavior (e.g. FileOutputCommitter)."
      logWarning(warningMessage)
    }

    FileOutputFormat.setOutputPath(hadoopConf,
      SparkHadoopWriterUtils.createPathFromString(path, hadoopConf))
    saveAsHadoopDataset(hadoopConf)
  }

  /**
   * Output the RDD to any Hadoop-supported storage system with new Hadoop API, using a Hadoop
   * Configuration object for that storage system. The Conf should set an OutputFormat and any
   * output paths required (e.g. a table name to write to) in the same way as it would be
   * configured for a Hadoop MapReduce job.
   *
   * @note We should make sure our tasks are idempotent when speculation is enabled, i.e. do
   * not use output committer that writes data directly.
   * There is an example in https://issues.apache.org/jira/browse/SPARK-10063 to show the bad
   * result of using direct output committer with speculation enabled.
   */
  def saveAsNewAPIHadoopDataset(conf: Configuration): Unit = self.withScope {
    val config = new HadoopMapReduceWriteConfigUtil[K, V](new SerializableConfiguration(conf))
    SparkHadoopWriter.write(
      rdd = self,
      config = config)
  }

  /**
   * Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for
   * that storage system. The JobConf should set an OutputFormat and any output paths required
   * (e.g. a table name to write to) in the same way as it would be configured for a Hadoop
   * MapReduce job.
   */
  def saveAsHadoopDataset(conf: JobConf): Unit = self.withScope {
    val config = new HadoopMapRedWriteConfigUtil[K, V](new SerializableJobConf(conf))
    SparkHadoopWriter.write(
      rdd = self,
      config = config)
  }

  /**
   * Return an RDD with the keys of each tuple.
   */
  def keys: RDD[K] = self.map(_._1)

  /**
   * Return an RDD with the values of each tuple.
   */
  def values: RDD[V] = self.map(_._2)

  private[spark] def keyClass: Class[_] = kt.runtimeClass

  private[spark] def valueClass: Class[_] = vt.runtimeClass

  private[spark] def keyOrdering: Option[Ordering[K]] = Option(ord)
}

相关信息

spark 源码目录

相关文章

spark AsyncRDDActions 源码

spark BinaryFileRDD 源码

spark BlockRDD 源码

spark CartesianRDD 源码

spark CheckpointRDD 源码

spark CoGroupedRDD 源码

spark CoalescedRDD 源码

spark DoubleRDDFunctions 源码

spark EmptyRDD 源码

spark HadoopRDD 源码

0  赞